
Open∇FOAM

The Open Source CFD Toolbox

Tutorial Guide

Version v2006
29th June 2020

T-2

Copyright c© 2004-2011, 2016-2020 OpenCFD Limited.

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported License.

Typeset in LATEX.

Open∇FOAM-v2006

T-3

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CRE-
ATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PRO-
TECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

1. Definitions

a. “Adaptation” means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of music or
other alterations of a literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be recast, trans-
formed, or adapted including in any form recognizably derived from the original, except that
a work that constitutes a Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical work, performance or
phonogram, the synchronization of the Work in timed-relation with a moving image (“synch-
ing”) will be considered an Adaptation for the purpose of this License.

b. “Collection” means a collection of literary or artistic works, such as encyclopedias and an-
thologies, or performances, phonograms or broadcasts, or other works or subject matter other
than works listed in Section 1(f) below, which, by reason of the selection and arrangement of
their contents, constitute intellectual creations, in which the Work is included in its entirety
in unmodified form along with one or more other contributions, each constituting separate
and independent works in themselves, which together are assembled into a collective whole.
A work that constitutes a Collection will not be considered an Adaptation (as defined above)
for the purposes of this License.

c. “Distribute” means to make available to the public the original and copies of the Work
through sale or other transfer of ownership.

d. “Licensor” means the individual, individuals, entity or entities that offer(s) the Work under
the terms of this License.

e. “Original Author” means, in the case of a literary or artistic work, the individual, individ-
uals, entity or entities who created the Work or if no individual or entity can be identified,
the publisher; and in addition (i) in the case of a performance the actors, singers, musicians,
dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise
perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram
the producer being the person or legal entity who first fixes the sounds of a performance
or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the
broadcast.

f. “Work” means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work of the same nature;
a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb
show; a musical composition with or without words; a cinematographic work to which are

Open∇FOAM-v2006

T-4

assimilated works expressed by a process analogous to cinematography; a work of drawing,
painting, architecture, sculpture, engraving or lithography; a photographic work to which are
assimilated works expressed by a process analogous to photography; a work of applied art; an
illustration, map, plan, sketch or three-dimensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a phonogram; a compilation of data to
the extent it is protected as a copyrightable work; or a work performed by a variety or circus
performer to the extent it is not otherwise considered a literary or artistic work.

g. “You” means an individual or entity exercising rights under this License who has not pre-
viously violated the terms of this License with respect to the Work, or who has received
express permission from the Licensor to exercise rights under this License despite a previous
violation.

h. “Publicly Perform” means to perform public recitations of the Work and to communicate
to the public those public recitations, by any means or process, including by wire or wireless
means or public digital performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a place individually chosen
by them; to perform the Work to the public by any means or process and the communication
to the public of the performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs, sounds or images.

i. “Reproduce” means to make copies of the Work by any means including without limitation
by sound or visual recordings and the right of fixation and reproducing fixations of the Work,
including storage of a protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights

Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright
or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Re-
produce the Work as incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically
necessary to exercise the rights in other media and formats, but otherwise you have no rights
to make Adaptations. Subject to 8(f), all rights not expressly granted by Licensor are hereby
reserved, including but not limited to the rights set forth in Section 4(d).

4. Restrictions

The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

Open∇FOAM-v2006

T-5

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You
must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of the recipient of the Work
to exercise the rights granted to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the
disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform.
When You Distribute or Publicly Perform the Work, You may not impose any effective
technological measures on the Work that restrict the ability of a recipient of the Work from
You to exercise the rights granted to that recipient under the terms of the License. This
Section 4(a) applies to the Work as incorporated in a Collection, but this does not require
the Collection apart from the Work itself to be made subject to the terms of this License. If
You create a Collection, upon notice from any Licensor You must, to the extent practicable,
remove from the Collection any credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial advantage or private monetary
compensation. The exchange of the Work for other copyrighted works by means of digital file-
sharing or otherwise shall not be considered to be intended for or directed toward commercial
advantage or private monetary compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request
has been made pursuant to Section 4(a), keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author
and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing
entity, journal) for attribution (”Attribution Parties”) in Licensor’s copyright notice, terms
of service or by other reasonable means, the name of such party or parties; (ii) the title of
the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work. The credit required by this Section 4(c) may be
implemented in any reasonable manner; provided, however, that in the case of a Collection,
at a minimum such credit will appear, if a credit for all contributing authors of Collection
appears, then as part of these credits and in a manner at least as prominent as the credits
for the other contributing authors. For the avoidance of doubt, You may only use the credit
required by this Section for the purpose of attribution in the manner set out above and, by
exercising Your rights under this License, You may not implicitly or explicitly assert or imply
any connection with, sponsorship or endorsement by the Original Author, Licensor and/or
Attribution Parties, as appropriate, of You or Your use of the Work, without the separate,
express prior written permission of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme cannot be
waived, the Licensor reserves the exclusive right to collect such royalties for any exercise
by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right
to collect royalties through any statutory or compulsory licensing scheme can be waived,
the Licensor reserves the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of such rights is for a
purpose or use which is otherwise than noncommercial as permitted under Section 4(b)
and otherwise waives the right to collect royalties through any statutory or compulsory
licensing scheme; and,

Open∇FOAM-v2006

T-6

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a purpose or use which is
otherwise than noncommercial as permitted under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by
applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or
as part of any Collections, You must not distort, mutilate, modify or take other derogatory
action in relation to the Work which would be prejudicial to the Original Author’s honor or
reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICEN-
SOR OFFERS THEWORKAS-IS ANDMAKES NO REPRESENTATIONS ORWARRANTIES
OF ANY KIND CONCERNING THEWORK, EXPRESS, IMPLIED, STATUTORY OR OTH-
ERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHAN-
TIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE
ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION
MAY NOT APPLY TO YOU.

6. Limitation on Liability

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCI-
DENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT
OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach
by You of the terms of this License. Individuals or entities who have received Collections
from You under this License, however, will not have their licenses terminated provided such
individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7,
and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the
duration of the applicable copyright in the Work). Notwithstanding the above, Licensor
reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to withdraw
this License (or any other license that has been, or is required to be, granted under the terms
of this License), and this License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers
to the recipient a license to the Work on the same terms and conditions as the license granted

Open∇FOAM-v2006

T-7

to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged with
such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be modified without the
mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted
utilizing the terminology of the Berne Convention for the Protection of Literary and Artis-
tic Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO
Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the
Universal Copyright Convention (as revised on July 24, 1971). These rights and subject
matter take effect in the relevant jurisdiction in which the License terms are sought to be
enforced according to the corresponding provisions of the implementation of those treaty
provisions in the applicable national law. If the standard suite of rights granted under appli-
cable copyright law includes additional rights not granted under this License, such additional
rights are deemed to be included in the License; this License is not intended to restrict the
license of any rights under applicable law.

Open∇FOAM-v2006

T-8

Trademarks

ANSYS is a registered trademark of ANSYS Inc.
CFX is a registered trademark of Ansys Inc.
CHEMKIN is a registered trademark of Reaction Design Corporation
EnSight is a registered trademark of Computational Engineering International Ltd.
Fluent is a registered trademark of Ansys Inc.
GAMBIT is a registered trademark of Ansys Inc.
Icem-CFD is a registered trademark of Ansys Inc.
I-DEAS is a registered trademark of Structural Dynamics Research Corporation
JAVA is a registered trademark of Sun Microsystems Inc.
Linux is a registered trademark of Linus Torvalds
OpenFOAM is a registered trademark of OpenCFD Ltd
ParaView is a registered trademark of Kitware
STAR-CD is a registered trademark of Computational Dynamics Ltd.
UNIX is a registered trademark of The Open Group

Open∇FOAM-v2006

Contents

Copyright Notice T-2

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported

Licence T-3

1. Definitions . T-3
2. Fair Dealing Rights . T-4
3. License Grant . T-4
4. Restrictions . T-4
5. Representations, Warranties and Disclaimer T-6
6. Limitation on Liability . T-6
7. Termination . T-6
8. Miscellaneous . T-6

Trademarks T-8

Contents T-9

1 Introduction T-13

1.1 Getting started . T-13
1.1.1 Note for Windows Users . T-14

2 Incompressible flow T-15

2.1 Lid-driven cavity flow . T-16
2.1.1 Pre-processing . T-16

2.1.1.1 Mesh generation T-16
2.1.1.2 Boundary and initial conditions T-18
2.1.1.3 Physical properties T-19
2.1.1.4 Control . T-20
2.1.1.5 Discretisation and linear-solver settings T-21

2.1.2 Viewing the mesh . T-21
2.1.3 Running an application . T-23
2.1.4 Post-processing . T-23

2.1.4.1 Isosurface and contour plots T-23
2.1.4.2 Vector plots . T-25
2.1.4.3 Streamline plots T-28

2.1.5 Increasing the mesh resolution T-28
2.1.5.1 Creating a new case using an existing case T-28
2.1.5.2 Creating the finer mesh T-28
2.1.5.3 Mapping the coarse mesh results onto the fine mesh T-29
2.1.5.4 Control adjustments T-29
2.1.5.5 Running the code as a background process T-29

T-10 Contents

2.1.5.6 Vector plot with the refined mesh T-30
2.1.5.7 Plotting graphs . T-30

2.1.6 Introducing mesh grading T-33
2.1.6.1 Creating the graded mesh T-33
2.1.6.2 Changing time and time step T-34
2.1.6.3 Mapping fields . T-35

2.1.7 Increasing the Reynolds number T-35
2.1.7.1 Pre-processing . T-35
2.1.7.2 Running the code T-35

2.1.8 High Reynolds number flow T-36
2.1.8.1 Pre-processing . T-37
2.1.8.2 Running the code T-38

2.1.9 Changing the case geometry T-39
2.1.10 Post-processing the modified geometry T-41

2.2 Flow around a cylinder . T-45
2.2.1 Problem specification . T-45
2.2.2 Note on potentialFoam . T-46
2.2.3 Mesh generation . T-46
2.2.4 Boundary conditions and initial fields T-49
2.2.5 Running the case . T-49

2.3 Magnetohydrodynamic flow of a liquid T-52
2.3.1 Problem specification . T-52
2.3.2 Mesh generation . T-53
2.3.3 Running the case . T-54

3 Compressible flow T-57

3.1 Steady turbulent flow over a backward-facing step T-58
3.1.1 Problem specification . T-58
3.1.2 Mesh generation . T-59
3.1.3 Boundary conditions and initial fields T-62
3.1.4 Case control . T-62
3.1.5 Running the case and post-processing T-62

3.2 Supersonic flow over a forward-facing step T-64
3.2.1 Problem specification . T-64
3.2.2 Mesh generation . T-65
3.2.3 Running the case . T-67
3.2.4 Exercise . T-67

3.3 Decompression of a tank internally pressurised with water T-68
3.3.1 Problem specification . T-68
3.3.2 Mesh Generation . T-69
3.3.3 Preparing the Run . T-71
3.3.4 Running the case . T-72
3.3.5 Improving the solution by refining the mesh T-72

4 Multiphase flow T-75

4.1 Breaking of a dam . T-76
4.1.1 Problem specification . T-76
4.1.2 Mesh generation . T-76
4.1.3 Boundary conditions . T-78
4.1.4 Setting initial field . T-79
4.1.5 Fluid properties . T-79

Open∇FOAM-v2006

Contents T-11

4.1.6 Turbulence modelling . T-80
4.1.7 Time step control . T-81
4.1.8 Discretisation schemes . T-82
4.1.9 Linear-solver control . T-82
4.1.10 Running the code . T-83
4.1.11 Post-processing . T-83
4.1.12 Running in parallel . T-83
4.1.13 Post-processing a case run in parallel T-85

5 Stress analysis T-89

5.1 Stress analysis of a plate with a hole T-90
5.1.1 Problem specification . T-90
5.1.2 Mesh generation . T-91

5.1.2.1 Boundary and initial conditions T-93
5.1.2.2 Mechanical properties T-95
5.1.2.3 Thermal properties T-95
5.1.2.4 Control . T-95
5.1.2.5 Discretisation schemes and linear-solver control . . T-96

5.1.3 Running the code . T-97
5.1.4 Post-processing . T-98
5.1.5 Exercises . T-99

5.1.5.1 Increasing mesh resolution T-99
5.1.5.2 Introducing mesh grading T-99
5.1.5.3 Changing the plate size T-100

Index T-101

Open∇FOAM-v2006

T-12 Contents

Open∇FOAM-v2006

Chapter 1

Introduction

This guide details the process of setup, simulation and post-processing for some Open-
FOAM test cases, with the principal aim of introducing a user to the basic procedures
of running OpenFOAM. The $FOAM TUTORIALS directory contains many more cases
that demonstrate the use of all the solvers and many utilities supplied with OpenFOAM.
Before attempting to run the tutorials, the user must first make sure that they have
installed OpenFOAM correctly.

The tutorial cases describe the use of the blockMesh pre-processing tool, case setup
and running OpenFOAM solvers and post-processing using paraFoam. Those users with
access to third-party post-processing tools supported in OpenFOAM have an option:
either they can follow the tutorials using paraFoam; or refer to the User Guide for details
on post-processing with external applications.

Copies of all tutorials are available from the tutorials directory of the OpenFOAM
installation. The tutorials are organised into a set of directories according to the type
of flow and then subdirectories according to solver. For example, all the icoFoam cases
are stored within a subdirectory incompressible/icoFoam, where incompressible indicates
the type of flow. If the user wishes to run a range of example cases, it is recommended
that the user copy the tutorials directory into their local run directory. They can be easily
copied by typing:

mkdir -p $FOAM RUN

cp -r $FOAM TUTORIALS $FOAM RUN

1.1 Getting started

An OpenFOAM case requires definitions for the mesh, initial fields, physical models,
control parameters, etc. As described in the User Guide section 2.1, OpenFOAM data is
stored in a set of files within a case directory rather than in a single case file. The case
directory is given a suitably descriptive name, e.g. the first example case for this tutorial
guide is simply named cavity, under which the required information is located in the three
directories:

• constant

• system, and

• initial time directory, e.g.0.

Editing files is possible in OpenFOAM because the I/O uses a plain text dictionary
format with keywords that convey sufficient meaning to be understood by even the least

T-14 Introduction

experienced users. Many editors are available for both Linux and Windows environments,
e.g. on Ubuntu the default GUI-based editor is gedit, and default terminal editor is nano.
Other popular text editors include vim, emacs, kate, and atom.

1.1.1 Note for Windows Users

When using a shared directory, e.g. between Windows and Docker, users may prefer to use
a Windows-based text editor. However, care should be taken not to change the encoding
of the text files to ensure that they remain readable by OpenFOAM. Good choices may
be atom and PSPad — both are free and automatically keep the correct encoding.

Open∇FOAM-v2006

Chapter 2

Incompressible flow

T-16 Incompressible flow

2.1 Lid-driven cavity flow

Tutorial path:

• $FOAM TUTORIALS/incompressible/icoFoam/cavity/cavity

This tutorial will describe how to pre-process, run and post-process a case involving
isothermal, incompressible flow in a two-dimensional square domain. The geometry is
shown in Figure 2.1 in which all the boundaries of the square are walls. The top wall
moves in the x-direction at a speed of 1 m/s while the other 3 are stationary. Initially,
the flow will be assumed laminar and will be solved on a uniform mesh using the icoFoam
solver for laminar, isothermal, incompressible flow. During the course of the tutorial, the
effect of increased mesh resolution and mesh grading towards the walls will be investigated.
Finally, the flow Reynolds number will be increased and the pisoFoam solver will be used
for turbulent, isothermal, incompressible flow.

x

Ux = 1 m/s

d = 0.1 m

y

Figure 2.1: Geometry of the lid driven cavity.

2.1.1 Pre-processing

In preparation of editing case files and running the first cavity case, the user should change
to the case directory

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavity/cavity

2.1.1.1 Mesh generation

OpenFOAM always operates in a 3 dimensional Cartesian coordinate system and all
geometries are generated in 3 dimensions. OpenFOAM solves the case in 3 dimensions
by default but can be instructed to solve in 2 dimensions by specifying a ‘special’ empty
boundary condition on boundaries normal to the (3rd) dimension for which no solution
is required. Here, the mesh must be 1 cell layer thick, and the empty patches planar.

The cavity domain consists of a square of side length d = 0.1 m in the x-y plane. A
uniform mesh of 20 by 20 cells will be used initially. The block structure is shown in
Figure 2.2. The blockMesh mesh generator supplied with OpenFOAM generates meshes
from a description specified in an input dictionary, blockMeshDict located in the system
directory for a given case. The blockMeshDict entries for this case are as follows:

Open∇FOAM-v2006

https://develop.openfoam.com/Development/OpenFOAM-plus/tree/master/tutorials/incompressible/icoFoam/cavity/cavity

2.1 Lid-driven cavity flow T-17

3 2

4 5

7 6

0
z

x 1
y

Figure 2.2: Block structure of the mesh for the cavity.

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2006 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object blockMeshDict;
14 }
15 // * //
16

17 scale 0.1;
18

19 vertices
20 (
21 (0 0 0)
22 (1 0 0)
23 (1 1 0)
24 (0 1 0)
25 (0 0 0.1)
26 (1 0 0.1)
27 (1 1 0.1)
28 (0 1 0.1)
29);
30

31 blocks
32 (
33 hex (0 1 2 3 4 5 6 7) (20 20 1) simpleGrading (1 1 1)
34);
35

36 edges
37 (
38);
39

40 boundary
41 (
42 movingWall
43 {
44 type wall;
45 faces
46 (
47 (3 7 6 2)
48);
49 }
50 fixedWalls
51 {
52 type wall;
53 faces
54 (
55 (0 4 7 3)
56 (2 6 5 1)
57 (1 5 4 0)

Open∇FOAM-v2006

T-18 Incompressible flow

58);
59 }
60 frontAndBack
61 {
62 type empty;
63 faces
64 (
65 (0 3 2 1)
66 (4 5 6 7)
67);
68 }
69);
70

71 mergePatchPairs
72 (
73);
74

75 // *** //

The file first contains header information in the form of a banner (lines 1-7), then file
information contained in a FoamFile sub-dictionary, delimited by curly braces ({...}).

For the remainder of the manual:

For the sake of clarity and to save space, file headers, including the banner and
FoamFile sub-dictionary, will be removed from verbatim quoting of case files

The file first specifies the list of coordinates representing the block vertices; These
are in arbitrary units, and can be scaled to the real problem dimensions using the scale
entry, e.g.

scale 0.1;

The next section defines the blocks (here, only 1) using the vertex indices, i.e. index 0
for vertex 0, index 1 for vertex 1, and so on, and the number of cells within it in each of
the 3 co-ordinate directions, and the cell spacing. The final section defines the boundary
patches. Please refer to the User Guide section 4.3 to understand the meaning of the
entries in the blockMeshDict file.

The mesh is generated by running blockMesh on this blockMeshDict file. From within
the case directory, this is done, simply by typing in the terminal:

blockMesh

The running status of blockMesh is reported in the terminal window. Any mistakes in
the blockMeshDict file are picked up by blockMesh and the resulting error message directs
the user to the line in the file where the problem occurred. There should be no error
messages at this stage.

2.1.1.2 Boundary and initial conditions

Once the mesh generation is complete, the user can look at this initial fields set up for
this case. The case is set up to start at time t = 0 s, so the initial field data is stored in
a 0 sub-directory of the cavity directory. The 0 sub-directory contains 2 files, p and U,
one for each of the pressure (p) and velocity (U) fields whose initial values and boundary
conditions must be set. Let us examine file p:

17 dimensions [0 2 -2 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 movingWall

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-19

24 {
25 type zeroGradient;
26 }
27

28 fixedWalls
29 {
30 type zeroGradient;
31 }
32

33 frontAndBack
34 {
35 type empty;
36 }
37 }
38

39 // *** //

There are 3 principal entries in field data files:

dimensions specifies the dimensions of the field, here kinematic pressure, i.e. m2 s−2 (see
User Guide section 2.2.6 for more information);

internalField the internal field data which can be uniform, described by a single value;
or nonuniform, where all the values of the field must be specified (see User Guide
section 2.2.8 for more information);

boundaryField the boundary field data that includes boundary conditions and data for
all the boundary patches (see User Guide section 2.2.8 for more information).

For this case cavity, the boundary consists of walls only, split into 2 patches named: (1)
fixedWalls for the fixed sides and base of the cavity; (2) movingWall for the moving top
of the cavity. As walls, both are given a zeroGradient boundary condition for p, meaning
“the normal gradient of pressure is zero”. The frontAndBack patch represents the front
and back planes of the 2D case and therefore must be set as empty.

In this case, as in most we encounter, the initial fields are set to be uniform. Here the
pressure is kinematic, and as an incompressible case, its absolute value is not relevant, so
is set to uniform 0 for convenience.

The user can similarly examine the velocity field in the 0/U file. The dimensions are
those expected for velocity, the internal field is initialised as uniform zero, which in the
case of velocity must be expressed by 3 vector components, i.e.uniform (0 0 0) (see
User Guide section 2.2.5 for more information).

The boundary field for velocity requires the same boundary condition for the front-
AndBack patch. The other patches are walls: a no-slip condition is assumed on the
fixedWalls, hence a fixedValue condition with a value of uniform (0 0 0). The top
surface moves at a speed of 1 m/s in the x-direction so requires a fixedValue condition
also but with uniform (1 0 0).

2.1.1.3 Physical properties

The physical properties for the case are stored in dictionaries whose names are given the
suffix . . . Properties, located in the Dictionaries directory tree. For an icoFoam case,
the only property that must be specified is the kinematic viscosity which is stored from
the transportProperties dictionary. The user can check that the kinematic viscosity is
set correctly by opening the transportProperties dictionary to view/edit its entries. The
keyword for kinematic viscosity is nu, the phonetic label for the Greek symbol ν by which
it is represented in equations. Initially this case will be run with a Reynolds number of
10, where the Reynolds number is defined as:

Re =
d|U|
ν

(2.1)

Open∇FOAM-v2006

T-20 Incompressible flow

where d and |U| are the characteristic length and velocity respectively and ν is the
kinematic viscosity. Here d = 0.1 m, |U| = 1 m s−1, so that for Re = 10, ν = 0.01 m2 s−1.
The correct file entry for kinematic viscosity is thus specified below:

17

18 nu 0.01;
19

20

21 // *** //

2.1.1.4 Control

Input data relating to the control of time and reading and writing of the solution data are
read in from the controlDict dictionary. The user should view this file; as a case control
file, it is located in the system directory.

The start/stop times and the time step for the run must be set. OpenFOAM offers
great flexibility with time control which is described in full in the User Guide section 6.1.
In this tutorial we wish to start the run at time t = 0 which means that OpenFOAM
needs to read field data from a directory named 0 — see User Guide section 2.1 for
more information of the case file structure. Therefore we set the startFrom keyword to
startTime and then specify the startTime keyword to be 0.

For the end time, we wish to reach the steady state solution where the flow is circu-
lating around the cavity. As a general rule, the fluid should pass through the domain 10
times to reach steady state in laminar flow. In this case the flow does not pass through
this domain as there is no inlet or outlet, so instead the end time can be set to the time
taken for the lid to travel ten times across the cavity, i.e. 1 s; in fact, with hindsight, we
discover that 0.5 s is sufficient so we shall adopt this value. To specify this end time, we
must specify the stopAt keyword as endTime and then set the endTime keyword to 0.5.

Now we need to set the time step, represented by the keyword deltaT. To achieve
temporal accuracy and numerical stability when running icoFoam, a Courant number of
less than 1 is required. The Courant number is defined for one cell as:

Co =
δt|U|
δx

(2.2)

where δt is the time step, |U| is the magnitude of the velocity through that cell and δx
is the cell size in the direction of the velocity. The flow velocity varies across the domain
and we must ensure Co < 1 everywhere. We therefore choose δt based on the worst case:
the maximum Co corresponding to the combined effect of a large flow velocity and small
cell size. Here, the cell size is fixed across the domain so the maximum Co will occur next
to the lid where the velocity approaches 1 m s−1. The cell size is:

δx =
d

n
=

0.1

20
= 0.005 m (2.3)

Therefore to achieve a Courant number less than or equal to 1 throughout the domain
the time step deltaT must be set to less than or equal to:

δt =
Co δx

|U| =
1× 0.005

1
= 0.005 s (2.4)

As the simulation progresses we wish to write results at certain intervals of time that
we can later view with a post-processing package. The writeControl keyword presents
several options for setting the time at which the results are written; here we select the
timeStep option which specifies that results are written every nth time step where the
value n is specified under the writeInterval keyword. Let us decide that we wish to

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-21

write our results at times 0.1, 0.2,. . . , 0.5 s. With a time step of 0.005 s, we therefore
need to output results at every 20th time time step and so we set writeInterval to 20.

OpenFOAM creates a new directory named after the current time, e.g. 0.1 s, on each
occasion that it writes a set of data, as discussed in full in User Guide section 2.1. In the
icoFoam solver, it writes out the results for each field, U and p, into the time directories.
For this case, the entries in the controlDict are shown below:

17

18 application icoFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 0.5;
27

28 deltaT 0.005;
29

30 writeControl timeStep;
31

32 writeInterval 20;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48

49 // *** //

2.1.1.5 Discretisation and linear-solver settings

The user specifies the choice of finite volume discretisation schemes in the fvSchemes
dictionary in the system directory. The specification of the linear equation solvers and
tolerances and other algorithm controls is made in the fvSolution dictionary, similarly in
the system directory. The user is free to view these dictionaries but we do not need to
discuss all their entries at this stage except for pRefCell and pRefValue in the PISO
sub-dictionary of the fvSolution dictionary. In a closed incompressible system such as the
cavity, pressure is relative: it is the pressure range that matters not the absolute values.
In cases such as this, the solver sets a reference level by pRefValue in cell pRefCell. In
this example both are set to 0. Changing either of these values will change the absolute
pressure field, but not, of course, the relative pressures or velocity field.

2.1.2 Viewing the mesh

Before the case is run it is a good idea to view the mesh to check for any errors. The mesh
is viewed in paraFoam, the post-processing tool supplied with OpenFOAM. The paraFoam
post-processing is started by typing in the terminal from within the case directory

paraFoam

Alternatively, it can be launched from another directory location with an optional
-case argument giving the case directory, e.g.

Open∇FOAM-v2006

T-22 Incompressible flow

paraFoam -case $FOAM RUN/tutorials/incompressible/icoFoam/cavity/cavity

This launches the ParaView window as shown in Figure ??. In the Pipeline Browser, the
user can see that ParaView has opened cavity.OpenFOAM, the module for the cavity case.
Before clicking the Apply button, the user needs to select some geometry from the
Mesh Parts panel. Because the case is small, it is easiest to select all the data by checking
the box adjacent to the Mesh Parts panel title, which automatically checks all individual
components within the respective panel. The user should then click the Apply button to
load the geometry into ParaView. Some general settings are applied as described in User
Guide section 7.1.7.1. Please consult this section about these settings.

The user should then open the Properties panel that controls the visual representation
of the selected module. Within the Display panel the user should do the following as shown
in Figure 2.3: (1) set Color By Solid Color; (2) click Edit and select an appropriate
colour e.g. black (for a white background); (3) select Wireframe from the Representation
menu. The background colour can be set by selecting Settings... from Edit in the top
menu panel.

Open Properties panel

Select Colouring by Solid Color

Select Wireframe

Select Solid Color e.g. Black

Figure 2.3: Viewing the mesh in paraFoam.

Especially the first time the user starts ParaView, it is recommended that they
manipulate the view as described in User Guide section 7.1.7. In particular, since this is
a 2D case, it is recommended that Camera Parallel Projection is selected. To do so, click
on the Toggle Advanced Properties to show the option towards the bottom on the panel.

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-23

The Orientation Axes can be toggled on and off in the Annotation window or moved by
drag and drop with the mouse.

2.1.3 Running an application

Like any UNIX/Linux executable, OpenFOAM applications can be run in two ways: as
a foreground process, i.e. one in which the shell waits until the command has finished
before giving a command prompt; as a background process, one which does not have to
be completed before the shell accepts additional commands.

On this occasion, we will run icoFoam in the foreground. The icoFoam solver is exe-
cuted either by entering the case directory and typing

icoFoam

at the command prompt, or with the optional -case argument giving the case directory,
e.g.

icoFoam -case $FOAM RUN/tutorials/incompressible/icoFoam/cavity/cavity

The progress of the job is written to the terminal window. It tells the user the current
time, maximum Courant number, initial and final residuals for all fields.

2.1.4 Post-processing

As soon as results are written to time directories, they can be viewed using paraFoam.
Return to the paraFoam window and select the Properties panel for the cavity.OpenFOAM
case module. If the correct window panels for the case module do not seem to be present
at any time, please ensure that: cavity.OpenFOAM is highlighted in blue; eye button
alongside it is switched on to show the graphics are enabled;

To prepare paraFoam to display the data of interest, we must first load the data at
the required run time of 0.5 s. If the case was run while ParaView was open, the output
data in time directories will not be automatically loaded within ParaView. To load the
data the user should click Refresh Times in the Properties window. The time data will be
loaded into ParaView.

2.1.4.1 Isosurface and contour plots

To view pressure, the user should open the Properties panel since it controls the vi-
sual representation of the selected module. To make a simple plot of pressure, the user
should select the following, as described in detail in Figure 2.4: select Surface from the
Representation menu; in the Coloring panel, select Color by and Rescale to Data
Range. Now in order to view the solution at t = 0.5 s, the user can use the VCR Controls

or Current Time Controls to change the current time to 0.5. These are located in the
toolbars below the menus at the top of the ParaView window, as shown in Figure ??. The
pressure field solution has, as expected, a region of low pressure at the top left of the
cavity and one of high pressure at the top right of the cavity as shown in Figure 2.5.

With the point icon () the pressure field is interpolated across each cell to give a
continuous appearance. Instead if the user selects the cell icon, , from the Coloring

by menu, a single value for pressure will be attributed to each cell so that each cell will
be denoted by a single colour with no grading.

Open∇FOAM-v2006

T-24 Incompressible flow

Rescale

Select Coloring by interpolated p
Select Surface
Open Properties Panel

Figure 2.4: Displaying pressure contours for the cavity case.

Figure 2.5: Pressures in the cavity case.

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-25

A colour bar can be included by either by clicking the Toggle Color Legend Visibility
button in the Active Variable Controls toolbar, or by selecting Show Color Legend

from the View menu. Clicking the Edit Color Map button, either in the Active Variable

Controls toolbar or in the Color panel of the Display window, the user can set a range
of attributes of the colour bar, such as text size, font selection and numbering format for
the scale. The colour bar can be located in the image window by drag and drop with the
mouse.

New versions of ParaView default to using a colour scale of blue to white to red rather
than the more common blue to green to red (rainbow). Therefore the first time that the
user executes ParaView, they may wish to change the colour scale. This can be done by
selecting Choose Preset in the Color Scale Editor and selecting Blue to Red Rainbow. After
clicking the OK confirmation button, the user can click the Make Default button so that
ParaView will always adopt this type of colour bar.

If the user rotates the image, they can see that they have now coloured the complete
geometry surface by the pressure. In order to produce a genuine contour plot the user
should first create a cutting plane, or ‘slice’, through the geometry using the Slice

filter as described in User Guide section 7.1.8.1. The cutting plane should be centred at
(0.05, 0.05, 0.005) and its normal should be set to (0, 0, 1) (click the Z Normal button).
Having generated the cutting plane, the contours can be created using by the Contour

filter described in User Guide section 7.1.8.

2.1.4.2 Vector plots

Before we start to plot the vectors of the flow velocity, it may be useful to remove other
modules that have been created, e.g. using the Slice and Contour filters described above.
These can: either be deleted entirely, by highlighting the relevant module in the Pipeline
Browser and clicking Delete in their respective Properties panel; or, be disabled by toggling
the eye button for the relevant module in the Pipeline Browser.

We now wish to generate a vector glyph for velocity at the centre of each cell. We first
need to filter the data to cell centres as described in User Guide section 7.1.9.1. With
the cavity.OpenFOAM module highlighted in the Pipeline Browser, the user should select
Cell Centers from the Filter->Alphabetical menu and then click Apply.

With these Centers highlighted in the Pipeline Browser, the user should then select
Glyph from the Filter->Alphabetical menu. The Properties window panel should ap-
pear as shown in Figure 2.6. In the resulting Properties panel, the velocity field, U, is
automatically selected in the vectors menu, since it is the only vector field present. By
default the Scale Mode for the glyphs will be Vector Magnitude of velocity but, since
the we may wish to view the velocities throughout the domain, the user should instead
select off and Set Scale Factor to 0.005. On clicking Apply, the glyphs appear coloured by
pressure. The user should also select Show Color Legend in Edit Color Map. The output
is shown in Figure 2.7, in which uppercase Times Roman fonts are selected for the Color
Legend headings and the labels are specified to 2 fixed significant figures by deselecting
Automatic Label Format and entering %-#6.2f in the Label Format text box. The back-
ground colour is set to white in the Properties as described in User Guide section 7.1.7.1.

Note that at the left and right walls, glyphs appear to indicate flow through the walls.
On closer examination, however, the user can see that while the flow direction is normal
to the wall, its magnitude is 0. This slightly confusing situation is caused by ParaView
choosing to orientate the glyphs in the x-direction when the glyph scaling off and the
velocity magnitude is 0.

Open∇FOAM-v2006

T-26 Incompressible flow

Select Glyph Type Arrow
Select Scale Mode off
Open Properties Panel
Specify Set Scale Factor 0.005

Figure 2.6: Properties panel for the Glyph filter.

Figure 2.7: Velocities in the cavity case.

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-27

Set Maximum Steps to 1500
Set Maximum Streamline Length to 0.5
Set Seed type to High Resolution Line Source

Set Points and Resolution

Set Initial Step Length to 0.01
Set Integration Step Unit to Cell Length

Click Toggle Advanced Properties

Open the Properties Panel

Open∇FOAM-v2006

T-28 Incompressible flow

2.1.4.3 Streamline plots

Again, before the user continues to post-process in ParaView, they should disable modules
such as those for the vector plot described above. We now wish to plot streamlines of
velocity as described in User Guide section 7.1.10.

With the cavity.OpenFOAM module highlighted in the Pipeline Browser, the user
should then select Stream Tracer from the Filter menu and then click Apply. The
Properties window panel should appear as shown in Figure 2.8. The Seed points should
be specified along a Line Source running vertically through the centre of the geometry,
i.e. from (0.05, 0, 0.005) to (0.05, 0.1, 0.005). For the image in this guide we used: a point
Resolution of 21; Max Propagation by Length 0.5; Initial Step Length by Cell Length 0.01;
and, Integration Direction BOTH. The Runge-Kutta 2 IntegratorType was used with
default parameters.

On clicking Apply the tracer is generated. The user should then select Tube from the
Filter menu to produce high quality streamline images. For the image in this report, we
used: Num. sides 6; Radius 0.0003; and, Radius factor 10. The streamtubes are coloured
by velocity magnitude. On clicking Apply the image in Figure 2.9 should be produced.

2.1.5 Increasing the mesh resolution

The mesh resolution will now be increased by a factor of two in each direction. The results
from the coarser mesh will be mapped onto the finer mesh to use as initial conditions for
the problem. The solution from the finer mesh will then be compared with those from
the coarser mesh.

2.1.5.1 Creating a new case using an existing case

We now wish to create a new case named cavityFine that is created from cavity. The user
should therefore clone the cavity case and edit the necessary files. First the user should
create a new case directory at the same directory level as the cavity case, e.g.

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavity

mkdir cavityFine

The user should then copy the base directories from the cavity case into cavityFine, and
then enter the cavityFine case.

cp -r cavity/constant cavityFine

cp -r cavity/system cavityFine

cd cavityFine

2.1.5.2 Creating the finer mesh

We now wish to increase the number of cells in the mesh by using blockMesh. The user
should open the blockMeshDict file in an editor and edit the block specification. The blocks
are specified in a list under the blocks keyword. The syntax of the block definitions is
described fully in User Guide section 4.3.1.3; at this stage it is sufficient to know that
following hex is first the list of vertices in the block, then a list (or vector) of numbers of
cells in each direction. This was originally set to (20 20 1) for the cavity case. The user
should now change this to (40 40 1) and save the file. The new refined mesh should
then be created by running blockMesh as before.

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-29

2.1.5.3 Mapping the coarse mesh results onto the fine mesh

The mapFields utility maps one or more fields relating to a given geometry onto the cor-
responding fields for another geometry. In our example, the fields are deemed ‘consistent’
because the geometry and the boundary types, or conditions, of both source and tar-
get fields are identical. We use the -consistent command line option when executing
mapFields in this example.

The field data that mapFields maps is read from the time directory specified by
startFrom/startTime in the controlDict of the target case, i.e. those into which the
results are being mapped. In this example, we wish to map the final results of the coarser
mesh from case cavity onto the finer mesh of case cavityFine. Therefore, since these re-
sults are stored in the 0.5 directory of cavity, the startTime should be set to 0.5 s in the
controlDict dictionary and startFrom should be set to startTime.

The case is ready to run mapFields. Typing mapFields -help quickly shows that map-
Fields requires the source case directory as an argument. We are using the -consistent
option, so the utility is executed from within the cavityFine directory by

mapFields ../cavity -consistent

The utility should run with output to the terminal including:
Source: ".." "cavity"
Target: "." "cavityFine"

Create databases as time

Source time: 0.5
Target time: 0.5
Create meshes

Source mesh size: 400 Target mesh size: 1600

Consistently creating and mapping fields for time 0.5

interpolating p
interpolating U

End

2.1.5.4 Control adjustments

To maintain a Courant number of less that 1, as discussed in section 2.1.1.4, the time
step must now be halved since the size of all cells has halved. Therefore deltaT should
be set to to 0.0025 s in the controlDict dictionary. Field data is currently written out at
an interval of a fixed number of time steps. Here we demonstrate how to specify data
output at fixed intervals of time. Under the writeControl keyword in controlDict, instead
of requesting output by a fixed number of time steps with the timeStep entry, a fixed
amount of run time can be specified between the writing of results using the runTime

entry. In this case the user should specify output every 0.1 and therefore should set
writeInterval to 0.1 and writeControl to runTime. Finally, since the case is starting
with a the solution obtained on the coarse mesh we only need to run it for a short period
to achieve reasonable convergence to steady-state. Therefore the endTime should be set
to 0.7 s. Make sure these settings are correct and then save the file.

2.1.5.5 Running the code as a background process

The user should experience running icoFoam as a background process, redirecting the
terminal output to a log file that can be viewed later. From the cavityFine directory, the
user should execute:

Open∇FOAM-v2006

T-30 Incompressible flow

icoFoam > log &

cat log

2.1.5.6 Vector plot with the refined mesh

The user can open multiple cases simultaneously in ParaView; essentially because each new
case is simply another module that appears in the Pipeline Browser. There is one minor
inconvenience when opening a new case in ParaView because there is a prerequisite that
the selected data is a file with a name that has an extension. However, in OpenFOAM,
each case is stored in a multitude of files with no extensions within a specific directory
structure. The solution, that the paraFoam script performs automatically, is to create
a dummy file with the extension .OpenFOAM — hence, the cavity case module is called
cavity.OpenFOAM.

However, if the user wishes to open another case directly from within ParaView, they
need to create such a dummy file. For example, to load the cavityFine case the file would
be created by typing at the command prompt:

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavity

touch cavityFine/cavityFine.OpenFOAM

Now the cavityFine case can be loaded into ParaView by selecting Open from the File
menu, and having navigated the directory tree, selecting cavityFine.OpenFOAM. The user
can now make a vector plot of the results from the refined mesh in ParaView. The plot can
be compared with the cavity case by enabling glyph images for both case simultaneously.

2.1.5.7 Plotting graphs

The user may wish to visualise the results by extracting some scalar measure of velocity
and plotting 2-dimensional graphs along lines through the domain. OpenFOAM is well
equipped for this kind of data manipulation. There are numerous utilities that perform
specialised data manipulations, and many can be accessed via the postProcess utility:

postProcess -list

returns the list:

CourantNo

Lambda2

MachNo

PecletNo

Q

R

XiReactionRate

add

boundaryCloud

cellMax

cellMin

components

div

enstrophy

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-31

faceMax

faceMin

flowRatePatch

flowType

forceCoeffsCompressible

forceCoeffsIncompressible

forcesCompressible

forcesIncompressible

grad

internalCloud

mag

magSqr

minMaxComponents

minMaxMagnitude

patchAverage

patchIntegrate

pressureDifferencePatch

pressureDifferenceSurface

probes

randomise

residuals

scalarTransport

singleGraph

staticPressure

streamFunction

streamlines

subtract

surfaces

totalPressureCompressible

totalPressureIncompressible

turbulenceFields

volFlowRateSurface

vorticity

wallHeatFlux

wallShearStress

writeCellCentres

writeCellVolumes

writeObjects

yPlus

The components and mag functions provide useful scalar measures of velocity.
When the components function is run on a case, say cavity, it reads the velocity vector

field from each time directory and, in the corresponding time directories, writes scalar
fields Ux, Uy and Uz representing the x, y and z components of velocity. Similarly the
mag function writes a scalar field magU to each time directory representing the magnitude
of velocity.

The user can run both functions simultaneously, e.g. for the cavity case the user
should go into the cavity directory and execute postProcess as follows:

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavity/cavity

postProcess -funcs '(components(U) mag(U))'

Open∇FOAM-v2006

T-32 Incompressible flow

The individual components can be plotted as a graph in ParaView. It is quick, con-
venient and has reasonably good control over labelling and formatting, so the printed
output is a fairly good standard. However, to produce graphs for publication, users may
prefer to write raw data and plot it with a dedicated graphing tool, such as gnuplot or
Grace/xmgr. To do this, see section 5.1.4.

Before commencing plotting, the user needs to load the newly generated Ux, Uy and
Uz fields into ParaView. To do this, the user should click the Refresh button at the top
of the Properties panel for the cavity.OpenFOAM module which will cause the new fields
to be loaded into ParaView and appear in the Volume Fields window. Ensure the new
fields are selected and the changes are applied, i.e. click Apply again if necessary. Also,
data is interpolated incorrectly at boundaries if the boundary regions are selected in the
Mesh Parts panel. Therefore the user should deselect the patches in the Mesh Parts panel,
i.e.movingWall, fixedWall and frontAndBack, and apply the changes.

Now, in order to display a graph in ParaView the user should select the module of inter-
est, e.g.cavity.OpenFOAM and apply the Plot Over Line filter from the Filter->Data

Analysis menu. This opens up a new XY Plot window below or beside the existing 3D
View window. A PlotOverLine module is created in which the user can specify the end
points of the line in the Properties panel. In this example, the user should position the
line vertically up the centre of the domain, i.e. from (0.05, 0, 0.005) to (0.05, 0.1, 0.005),
in the Point1 and Point2 text boxes. The Resolution can be set to 100.

On clicking Apply, a graph is generated in the XY Plot window. In the Display panel,
the Attribute Mode is set to Point Data by default. The Use Data Array option can
be selected for the X Axis Data, taking the arc length option so that the x-axis of the
graph represents distance from the base of the cavity.

The user can choose the fields to be displayed in the Line Series panel of the Display
window. From the list of scalar fields to be displayed, it can be seen that the magnitude
and components of vector fields are available by default, e.g. displayed as U:X, so that it
was not necessary to create Ux using postProcess. Nevertheless, the user should deselect
all series except Ux (or U:x). A square colour box in the adjacent column to the selected
series indicates the line colour. The user can edit this most easily by a double click of the
mouse over that selection.

In order to format the graph, the user should modify the settings below the Line Series
panel, namely Line Color, Line Thickness, Line Style, Marker Style and Chart

Axes.

Also the user can click one of the buttons above the top left corner of the XY Plot.
The third button, for example, allows the user to control View Settings in which the user
can set title and legend for each axis, for example. Also, the user can set font, colour and
alignment of the axes titles, and has several options for axis range and labels in linear or
logarithmic scales.

Figure 2.11 is a graph produced using ParaView. The user can produce a graph
however he/she wishes. For information, the graph in Figure 2.11 was produced with the
options for axes of: Standard type of Notation; Specify Axis Range selected; titles in Sans

Serif 12 font. The graph is displayed as a set of points rather than a line by activating
the Enable Line Series button in the Display window. Note: if this button appears to be
inactive by being “greyed out”, it can be made active by selecting and deselecting the
sets of variables in the Line Series panel. Once the Enable Line Series button is selected,
the Line Style and Marker Style can be adjusted to the user’s preference.

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-33

2.1.6 Introducing mesh grading

The error in any solution will be more pronounced in regions where the form of the
true solution differ widely from the form assumed in the chosen numerical schemes. For
example a numerical scheme based on linear variations of variables over cells can only
generate an exact solution if the true solution is itself linear in form. The error is largest
in regions where the true solution deviates greatest from linear form, i.e. where the change
in gradient is largest. Error decreases with cell size.

It is useful to have an intuitive appreciation of the form of the solution before setting
up any problem. It is then possible to anticipate where the errors will be largest and
to grade the mesh so that the smallest cells are in these regions. In the cavity case the
large variations in velocity can be expected near a wall and so in this part of the tutorial
the mesh will be graded to be smaller in this region. By using the same number of cells,
greater accuracy can be achieved without a significant increase in computational cost.

A mesh of 20×20 cells with grading towards the walls will be created for the lid-driven
cavity problem and the results from the finer mesh of section 2.1.5.2 will then be mapped
onto the graded mesh to use as an initial condition. The results from the graded mesh will
be compared with those from the previous meshes. Since the changes to the blockMeshDict
dictionary are fairly substantial, the case used for this part of the tutorial, cavityGrade, is
supplied in the $FOAM RUN/tutorials/incompressible/icoFoam/cavity directory.

2.1.6.1 Creating the graded mesh

The mesh now needs 4 blocks as different mesh grading is needed on the left and right and
top and bottom of the domain. The block structure for this mesh is shown in Figure 2.12.
The user can view the blockMeshDict file in the system subdirectory of cavityGrade; for
completeness the key elements of the blockMeshDict file are also reproduced below. Each
block now has 10 cells in the x and y directions and the ratio between largest and smallest
cells is 2.

17 scale 0.1;
18

19 vertices
20 (
21 (0 0 0)
22 (0.5 0 0)
23 (1 0 0)
24 (0 0.5 0)
25 (0.5 0.5 0)
26 (1 0.5 0)
27 (0 1 0)
28 (0.5 1 0)
29 (1 1 0)
30 (0 0 0.1)
31 (0.5 0 0.1)
32 (1 0 0.1)
33 (0 0.5 0.1)
34 (0.5 0.5 0.1)
35 (1 0.5 0.1)
36 (0 1 0.1)
37 (0.5 1 0.1)
38 (1 1 0.1)
39);
40

41 blocks
42 (
43 hex (0 1 4 3 9 10 13 12) (10 10 1) simpleGrading (2 2 1)
44 hex (1 2 5 4 10 11 14 13) (10 10 1) simpleGrading (0.5 2 1)
45 hex (3 4 7 6 12 13 16 15) (10 10 1) simpleGrading (2 0.5 1)
46 hex (4 5 8 7 13 14 17 16) (10 10 1) simpleGrading (0.5 0.5 1)
47);
48

49 edges
50 (
51);
52

53 boundary

Open∇FOAM-v2006

T-34 Incompressible flow

54 (
55 movingWall
56 {
57 type wall;
58 faces
59 (
60 (6 15 16 7)
61 (7 16 17 8)
62);
63 }
64 fixedWalls
65 {
66 type wall;
67 faces
68 (
69 (3 12 15 6)
70 (0 9 12 3)
71 (0 1 10 9)
72 (1 2 11 10)
73 (2 5 14 11)
74 (5 8 17 14)
75);
76 }
77 frontAndBack
78 {
79 type empty;
80 faces
81 (
82 (0 3 4 1)
83 (1 4 5 2)
84 (3 6 7 4)
85 (4 7 8 5)
86 (9 10 13 12)
87 (10 11 14 13)
88 (12 13 16 15)
89 (13 14 17 16)
90);
91 }
92);
93

94 mergePatchPairs
95 (
96);
97

98 // *** //

Once familiar with the blockMeshDict file for this case, the user can execute blockMesh
from the command line. The graded mesh can be viewed as before using paraFoam as
described in section 2.1.2.

2.1.6.2 Changing time and time step

The highest velocities and smallest cells are next to the lid, therefore the highest Courant
number will be generated next to the lid, for reasons given in section 2.1.1.4. It is therefore
useful to estimate the size of the cells next to the lid to calculate an appropriate time
step for this case.

When a nonuniform mesh grading is used, blockMesh calculates the cell sizes using a
geometric progression. Along a length l, if n cells are requested with a ratio of R between
the last and first cells, the size of the smallest cell, δxs, is given by:

δxs = l
r − 1

αr − 1
(2.5)

where r is the ratio between one cell size and the next which is given by:

r = R
1

n−1 (2.6)

and

α =

{

R for R > 1,

1− r−n + r−1 for R < 1.
(2.7)

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-35

For the cavityGrade case the number of cells in each direction in a block is 10, the ratio
between largest and smallest cells is 2 and the block height and width is 0.05 m. Therefore
the smallest cell length is 3.45 mm. From Equation 2.2, the time step should be less than
3.45 ms to maintain a Courant of less than 1. To ensure that results are written out
at convenient time intervals, the time step deltaT should be reduced to 2.5 ms and the
writeInterval set to 40 so that results are written out every 0.1 s. These settings can
be viewed in the cavityGrade/system/controlDict file.

The startTime needs to be set to that of the final conditions of the case cavityFine,
i.e.0.7. Since cavity and cavityFine converged well within the prescribed run time, we can
set the run time for case cavityGrade to 0.1 s, i.e. the endTime should be 0.8.

2.1.6.3 Mapping fields

As in section 2.1.5.3, use mapFields to map the final results from case cavityFine onto the
mesh for case cavityGrade. Enter the cavityGrade directory and execute mapFields by:

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavity/cavityGrade

mapFields ../cavityFine -consistent

Now run icoFoam from the case directory and monitor the run time information. View
the converged results for this case and compare with other results using post-processing
tools described previously in section 2.1.5.6 and section 2.1.5.7.

2.1.7 Increasing the Reynolds number

The cases solved so far have had a Reynolds number of 10. This is very low and leads to
a stable solution quickly with only small secondary vortices at the bottom corners of the
cavity. We will now increase the Reynolds number to 100, at which point the solution
takes a noticeably longer time to converge. The coarsest mesh in case cavity will be used
initially. The user should make a copy of the cavity case and name it cavityHighRe by
typing:

cd $FOAM_RUN/tutorials/incompressible/icoFoam/cavity

cp -r cavity cavityHighRe

2.1.7.1 Pre-processing

Enter the cavityHighRe case and edit the transportProperties dictionary. Since the Reynolds
number is required to be increased by a factor of 10, decrease the kinematic viscosity by
a factor of 10, i.e. to 1 × 10−3 m2 s−1. We can now run this case by restarting from the
solution at the end of the cavity case run. To do this we can use the option of setting the
startFrom keyword to latestTime so that icoFoam takes as its initial data the values
stored in the directory corresponding to the most recent time, i.e. 0.5. The endTime

should be set to 2 s.

2.1.7.2 Running the code

Run icoFoam for this case from the case directory and view the run time information.
When running a job in the background, the following UNIX commands can be useful:

nohup enables a command to keep running after the user who issues the command has
logged out;

Open∇FOAM-v2006

T-36 Incompressible flow

nice changes the priority of the job in the kernel’s scheduler; a niceness of -20 is the
highest priority and 19 is the lowest priority.

This is useful, for example, if a user wishes to set a case running on a remote machine
and does not wish to monitor it heavily, in which case they may wish to give it low
priority on the machine. In that case the nohup command allows the user to log out of a
remote machine he/she is running on and the job continues running, while nice can set
the priority to 19. For our case of interest, we can execute the command in this manner
as follows:

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavity/cavityHighRe

nohup nice -n 19 icoFoam > log &

cat log

In previous runs you may have noticed that icoFoam stops solving for velocity U quite
quickly but continues solving for pressure p for a lot longer or until the end of the run.
In practice, once icoFoam stops solving for U and the initial residual of p is less than
the tolerance set in the fvSolution dictionary (typically 10−6), the run has effectively
converged and can be stopped once the field data has been written out to a time directory.
For example, at convergence a sample of the log file from the run on the cavityHighRe
case appears as follows in which the velocity has already converged after 1.62 s and
initial pressure residuals are small; No Iterations 0 indicates that the solution of U has
stopped:

1

2 Time = 1.63
3

4 Courant Number mean: 0.221985 max: 0.839923
5 smoothSolver: Solving for Ux, Initial residual = 3.64032e-06, Final residual = 3.64032e-06, No Iterations 0
6 smoothSolver: Solving for Uy, Initial residual = 4.20677e-06, Final residual = 4.20677e-06, No Iterations 0
7 DICPCG: Solving for p, Initial residual = 2.11678e-06, Final residual = 7.25303e-07, No Iterations 3
8 time step continuity errors : sum local = 7.25166e-09, global = 4.96308e-19, cumulative = -1.28342e-17
9 DICPCG: Solving for p, Initial residual = 1.36075e-06, Final residual = 7.94478e-07, No Iterations 1

10 time step continuity errors : sum local = 7.77548e-09, global = -4.78772e-19, cumulative = -1.3313e-17
11 ExecutionTime = 0.38 s ClockTime = 0 s
12

13 Time = 1.635
14

15 Courant Number mean: 0.221986 max: 0.839923
16 smoothSolver: Solving for Ux, Initial residual = 3.56036e-06, Final residual = 3.56036e-06, No Iterations 0
17 smoothSolver: Solving for Uy, Initial residual = 4.11726e-06, Final residual = 4.11726e-06, No Iterations 0
18 DICPCG: Solving for p, Initial residual = 2.03881e-06, Final residual = 8.18692e-07, No Iterations 3
19 time step continuity errors : sum local = 8.38471e-09, global = -6.27334e-19, cumulative = -1.39403e-17
20 DICPCG: Solving for p, Initial residual = 1.36655e-06, Final residual = 7.94623e-07, No Iterations 1
21 time step continuity errors : sum local = 8.25673e-09, global = 5.87298e-20, cumulative = -1.38816e-17
22 ExecutionTime = 0.38 s ClockTime = 0 s

2.1.8 High Reynolds number flow

View the results in paraFoam and display the velocity vectors. The secondary vortices in
the corners have increased in size somewhat. The user can then increase the Reynolds
number further by decreasing the viscosity and then rerun the case. The number of
vortices increases so the mesh resolution around them will need to increase in order to
resolve the more complicated flow patterns. In addition, as the Reynolds number increases
the time to convergence increases. The user should monitor residuals and extend the
endTime accordingly to ensure convergence.

The need to increase spatial and temporal resolution then becomes impractical as
the flow moves into the turbulent regime, where problems of solution stability may also
occur. Of course, many engineering problems have very high Reynolds numbers and it
is infeasible to bear the huge cost of solving the turbulent behaviour directly. Instead
Reynolds-averaged simulation (RAS) turbulence models are used to solve for the mean
flow behaviour and calculate the statistics of the fluctuations. The standard k− ε model
with wall functions will be used in this tutorial to solve the lid-driven cavity case with

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-37

a Reynolds number of 104. Two extra variables are solved for: k, the turbulent kinetic
energy; and, ε, the turbulent dissipation rate. The additional equations and models for
turbulent flow are implemented into a OpenFOAM solver called pisoFoam.

2.1.8.1 Pre-processing

Change directory to the cavity case in the $FOAM RUN/tutorials/incompressible/pisoFoam/-
RAS directory (N.B: the pisoFoam/RAS directory). Generate the mesh by running
blockMesh as before. Mesh grading towards the wall is not necessary when using the
standard k − ε model with wall functions since the flow in the near wall cell is modelled,
rather than having to be resolved.

A range of wall function models is available in OpenFOAM that are applied as bound-
ary conditions on individual patches. This enables different wall function models to be
applied to different wall regions. The choice of wall function models are specified through
the turbulent viscosity field, νt in the 0/nut file:

17

18 dimensions [0 2 -1 0 0 0 0];
19

20 internalField uniform 0;
21

22 boundaryField
23 {
24 movingWall
25 {
26 type nutkWallFunction;
27 value uniform 0;
28 }
29 fixedWalls
30 {
31 type nutkWallFunction;
32 value uniform 0;
33 }
34 frontAndBack
35 {
36 type empty;
37 }
38 }
39

40

41 // *** //

This case uses standard wall functions, specified by the nutWallFunction keyword entry
on the movingWall and fixedWalls patches. Other wall function models include the
rough wall functions, specified though the nutRoughWallFunction keyword.

The user should now open the field files for k and ε (0/k and 0/epsilon) and examine
their boundary conditions. For a wall boundary condition wall, ε is assigned a epsilon-
WallFunction boundary condition and a kqRwallFunction boundary condition is assigned
to k. The latter is a generic boundary condition that can be applied to any field that are
of a turbulent kinetic energy type, e.g. k, q or Reynolds Stress R. The initial values for
k and ε are set using an estimated fluctuating component of velocity U′ and a turbulent
length scale, l. k and ε are defined in terms of these parameters as follows:

k =
1

2
U′

•U′ (2.8)

ε =
C0.75

µ k1.5

l
(2.9)

where Cµ is a constant of the k − ε model equal to 0.09. For a Cartesian coordinate
system, k is given by:

k =
1

2
(U ′ 2

x + U ′ 2

y + U ′ 2

z) (2.10)

Open∇FOAM-v2006

T-38 Incompressible flow

where U ′ 2
x , U ′ 2

y and U ′ 2
z are the fluctuating components of velocity in the x, y and z

directions respectively. Let us assume the initial turbulence is isotropic, i.e. U ′ 2
x = U ′ 2

y =
U ′ 2
z , and equal to 5% of the lid velocity and that l, is equal to 20% of the box width, 0.1

m, then k and ε are given by:

U ′

x = U ′

y = U ′

z =
5

100
1 m s−1 (2.11)

⇒ k =
3

2

(

5

100

)2

m2 s−2 = 3.75× 10−3 m2 s−2 (2.12)

ε =
0.090.75 × (3.75× 10−3)1.5

0.2× 0.1
≈ 1.89× 10−3 m2s−3 (2.13)

These form the initial conditions for k and ε. The initial conditions for U and p are
(0, 0, 0) and 0 respectively as before.

Turbulence modelling includes a range of methods, e.g. RAS or large-eddy simulation
(LES), that are provided in OpenFOAM. In most transient solvers, the choice of turbu-
lence modelling method is selectable at run-time through the simulationType keyword
in turbulenceProperties dictionary. The user can view this file in the constant directory:

17

18 simulationType RAS;
19

20 RAS
21 {
22 RASModel kEpsilon;
23

24 turbulence on;
25

26 printCoeffs on;
27 }
28

29 // *** //

The options for simulationType are laminar, RAS and LES. More informaton on turbu-
lence models can be found in the Extended Code Guide With RAS selected in this case,
the choice of RAS modelling is specified in a turbulenceProperties subdictionary, also in
the constant directory. The turbulence model is selected by the RASModel entry from a
long list of available models that are listed in User Guide Table A.5. The kEpsilon model
should be selected which is is the standard k − ε model; the user should also ensure that
turbulence calculation is switched on.

The coefficients for each turbulence model are stored within the respective code with
a set of default values. Setting the optional switch called printCoeffs to on will make
the default values be printed to standard output, i.e. the terminal, when the model is
called at run time. The coefficients are printed out as a sub-dictionary whose name
is that of the model name with the word Coeffs appended, e.g. kEpsilonCoeffs in
the case of the kEpsilon model. The coefficients of the model, e.g. kEpsilon, can be
modified by optionally including (copying and pasting) that sub-dictionary within the
turbulenceProperties file and adjusting values accordingly.

The user should next set the laminar kinematic viscosity in the transportProperties
dictionary. To achieve a Reynolds number of 104, a kinematic viscosity of 10−5 m is
required based on the Reynolds number definition given in Equation 2.1.

Finally the user should set the startTime, stopTime, deltaT and the writeInterval
in the controlDict. Set deltaT to 0.005 s to satisfy the Courant number restriction and
the endTime to 10 s.

2.1.8.2 Running the code

Execute pisoFoam by entering the case directory and typing “pisoFoam” in a terminal.
In this case, where the viscosity is low, the boundary layer next to the moving lid is

Open∇FOAM-v2006

http://openfoam.com/documentation/cpp-guide/html/guide-turbulence.html

2.1 Lid-driven cavity flow T-39

very thin and the cells next to the lid are comparatively large so the velocity at their
centres are much less than the lid velocity. In fact, after ≈ 100 time steps it becomes
apparent that the velocity in the cells adjacent to the lid reaches an upper limit of around
0.2 m s−1 hence the maximum Courant number does not rise much above 0.2. It is sensible
to increase the solution time by increasing the time step to a level where the Courant
number is much closer to 1. Therefore reset deltaT to 0.02 s and, on this occasion, set
startFrom to latestTime. This instructs pisoFoam to read the start data from the latest
time directory, i.e.10.0. The endTime should be set to 20 s since the run converges a lot
slower than the laminar case. Restart the run as before and monitor the convergence of
the solution. View the results at consecutive time steps as the solution progresses to see
if the solution converges to a steady-state or perhaps reaches some periodically oscillating
state. In the latter case, convergence may never occur but this does not mean the results
are inaccurate.

2.1.9 Changing the case geometry

A user may wish to make changes to the geometry of a case and perform a new simulation.
It may be useful to retain some or all of the original solution as the starting conditions
for the new simulation. This is a little complex because the fields of the original solution
are not consistent with the fields of the new case. However the mapFields utility can map
fields that are inconsistent, either in terms of geometry or boundary types or both.

As an example, let us go to the cavityClipped case in the icoFoam directory which
consists of the standard cavity geometry but with a square of length 0.04 m removed from
the bottom right of the cavity, according to the blockMeshDict below:

17 scale 0.1;
18

19 vertices
20 (
21 (0 0 0)
22 (0.6 0 0)
23 (0 0.4 0)
24 (0.6 0.4 0)
25 (1 0.4 0)
26 (0 1 0)
27 (0.6 1 0)
28 (1 1 0)
29

30 (0 0 0.1)
31 (0.6 0 0.1)
32 (0 0.4 0.1)
33 (0.6 0.4 0.1)
34 (1 0.4 0.1)
35 (0 1 0.1)
36 (0.6 1 0.1)
37 (1 1 0.1)
38

39);
40

41 blocks
42 (
43 hex (0 1 3 2 8 9 11 10) (12 8 1) simpleGrading (1 1 1)
44 hex (2 3 6 5 10 11 14 13) (12 12 1) simpleGrading (1 1 1)
45 hex (3 4 7 6 11 12 15 14) (8 12 1) simpleGrading (1 1 1)
46);
47

48 edges
49 (
50);
51

52 boundary
53 (
54 lid
55 {
56 type wall;
57 faces
58 (
59 (5 13 14 6)
60 (6 14 15 7)

Open∇FOAM-v2006

T-40 Incompressible flow

61);
62 }
63 fixedWalls
64 {
65 type wall;
66 faces
67 (
68 (0 8 10 2)
69 (2 10 13 5)
70 (7 15 12 4)
71 (4 12 11 3)
72 (3 11 9 1)
73 (1 9 8 0)
74);
75 }
76 frontAndBack
77 {
78 type empty;
79 faces
80 (
81 (0 2 3 1)
82 (2 5 6 3)
83 (3 6 7 4)
84 (8 9 11 10)
85 (10 11 14 13)
86 (11 12 15 14)
87);
88 }
89);
90

91 mergePatchPairs
92 (
93);
94

95 // *** //

Generate the mesh with blockMesh. The patches are set as according to the previous
cavity cases. For the sake of clarity in describing the field mapping process, the upper
wall patch is renamed lid, previously the movingWall patch of the original cavity.

In an inconsistent mapping, there is no guarantee that all the field data can be mapped
from the source case. The remaining data must come from field files in the target case
itself. Therefore field data must exist in the time directory of the target case before
mapping takes place. In the cavityClipped case the mapping is set to occur at time 0.5 s,
since the startTime is set to 0.5 s in the controlDict. Therefore the user needs to copy
initial field data to that directory, e.g. from time 0:

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavity/cavityClipped

cp -r 0 0.5

Before mapping the data, the user should view the geometry and fields at 0.5 s.
Now we wish to map the velocity and pressure fields from cavity onto the new fields

of cavityClipped. Since the mapping is inconsistent, we need to edit the mapFieldsDict
dictionary, located in the system directory. The dictionary contains 2 keyword entries:
patchMap and cuttingPatches. The patchMap list contains a mapping of patches from
the source fields to the target fields. It is used if the user wishes a patch in the target
field to inherit values from a corresponding patch in the source field. In cavityClipped, we
wish to inherit the boundary values on the lid patch from movingWall in cavity so we
must set the patchMap as:

patchMap

(

lid movingWall

);

The cuttingPatches list contains names of target patches whose values are to be
mapped from the source internal field through which the target patch cuts. In this case
we will include the fixedWalls to demonstrate the interpolation process.

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-41

cuttingPatches

(

fixedWalls

);

Now the user should run mapFields, from within the cavityClipped directory:

mapFields ../cavity

The user can view the mapped field as shown in Figure 2.13. The boundary patches
have inherited values from the source case as we expected. Having demonstrated this,
however, we actually wish to reset the velocity on the fixedWalls patch to (0, 0, 0). Edit
the U field, go to the fixedWalls patch and change the field from nonuniform to uniform
(0, 0, 0). The nonuniform field is a list of values that requires deleting in its entirety. Now
run the case with icoFoam.

2.1.10 Post-processing the modified geometry

Velocity glyphs can be generated for the case as normal, first at time 0.5 s and later at
time 0.6 s, to compare the initial and final solutions. In addition, we provide an outline of
the geometry which requires some care to generate for a 2D case. The user should select
Extract Block from the Filter menu and, in the Parameter panel, highlight the patches
of interest, namely the lid and fixedWalls. On clicking Apply, these items of geometry
can be displayed by selecting Wireframe in the Properties panel. Figure 2.14 displays
the patches in black and shows vortices forming in the bottom corners of the modified
geometry.

Open∇FOAM-v2006

T-42 Incompressible flow

Figure 2.9: Streamlines in the cavity case.

Open Display panel

Select Scatter Plot

Select Ux from Line Series
Select arc length

Figure 2.10: Selecting fields for graph plotting.

Open∇FOAM-v2006

2.1 Lid-driven cavity flow T-43

Figure 2.11: Plotting graphs in ParaView.

0
z

x
y

3 4 5

6 87

1 2

1715

9 1110

16

12 13 14

0 1

2 3

Figure 2.12: Block structure of the graded mesh for the cavity (block numbers encircled).

Figure 2.13: cavity solution velocity field mapped onto cavityClipped.

Open∇FOAM-v2006

T-44 Incompressible flow

Figure 2.14: cavityClipped solution for velocity field.

Open∇FOAM-v2006

2.2 Flow around a cylinder T-45

2.2 Flow around a cylinder

Tutorial path:

• $FOAM TUTORIALS/basic/potentialFoam/cylinder

In this example we shall investigate potential flow around a cylinder using thepotentialFoam
solver. This example introduces the following OpenFOAM features:

• non-orthogonal meshes;

• generating an analytical solution to a problem in OpenFOAM;

• use of a dynamic code to generate the block vertices;

• use of a coded function object to compare results against the analytical solution.

2.2.1 Problem specification

The problem is defined as follows:

Solution domain The domain is 2 dimensional and consists of a square domain with
a cylinder collocated with the centre of the square as shown in Figure 2.15.

Ux = 1.0 m/s p = 0 bar

symmetry

0.5 m

4.0 m

4.0 m
x

y

0

Figure 2.15: Geometry of flow round a cylinder

Governing equations

• Mass continuity for an incompressible fluid

∇ •U = 0 (2.14)

• Pressure equation for an incompressible, irrotational fluid assuming steady-
state conditions

∇2p = 0 (2.15)

Open∇FOAM-v2006

https://develop.openfoam.com/Development/OpenFOAM-plus/tree/master/tutorials/basic/potentialFoam/cylinder

T-46 Incompressible flow

Boundary conditions

• Inlet (left) with fixed velocity U = (1, 0, 0) m/s.

• Outlet (right) with a fixed pressure p = 0 Pa.

• No-slip wall (bottom);

• Symmetry plane (top).

Initial conditions U = 0 m/s, p = 0 Pa — required in OpenFOAM input files but not
necessary for the solution since the problem is steady-state.

Solver name potentialFoam: a potential flow code, i.e. assumes the flow is incompress-
ible, steady, irrotational, inviscid and it ignores gravity.

Case name cylinder case located in the $FOAM TUTORIALS/basic/potentialFoam di-
rectory.

2.2.2 Note on potentialFoam

potentialFoam is a useful solver to validate OpenFOAM since the assumptions of potential
flow are such that an analytical solution exists for cases whose geometries are relatively
simple. In this example of flow around a cylinder an analytical solution exists with which
we can compare our numerical solution. potentialFoam can also be run more like a utility
to provide a (reasonably) conservative initial U field for a problem. When running certain
cases, this can useful for avoiding instabilities due to the initial field being unstable.
In short, potentialFoam creates a conservative field from a non-conservative initial field
supplied by the user.

2.2.3 Mesh generation

Mesh generation using blockMesh has been described in tutorials in the User Guide. In
this case, the mesh consists of 10 blocks as shown in Figure 2.16. Remember that all

10

5

4

9

10

3

81817

16

1514

111213 2

7 6

2

3

0

1

4

5

6
7

8
9

y

x
down down

left right

cylinder

up

Figure 2.16: Blocks in cylinder geometry

meshes are treated as 3 dimensional in OpenFOAM. If we wish to solve a 2 dimensional

Open∇FOAM-v2006

2.2 Flow around a cylinder T-47

problem, we must describe a 3 dimensional mesh that is only one cell thick in the third
direction that is not solved. In Figure 2.16 we show only the back plane of the geometry,
along z = −0.5, in which the vertex numbers are numbered 0-18. The other 19 vertices
in the front plane, z = +0.5, are numbered in the same order as the back plane, as shown
in the mesh description file below:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2006 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object blockMeshDict;
14 }
15 // * //
16

17 scale 1;
18

19 vertices #codeStream
20 {
21 codeInclude
22 #{
23 #include "pointField.H"
24 #};
25

26 code
27 #{
28 pointField points(19);
29 points[0] = point(0.5, 0, -0.5);
30 points[1] = point(1, 0, -0.5);
31 points[2] = point(2, 0, -0.5);
32 points[3] = point(2, 0.707107, -0.5);
33 points[4] = point(0.707107, 0.707107, -0.5);
34 points[5] = point(0.353553, 0.353553, -0.5);
35 points[6] = point(2, 2, -0.5);
36 points[7] = point(0.707107, 2, -0.5);
37 points[8] = point(0, 2, -0.5);
38 points[9] = point(0, 1, -0.5);
39 points[10] = point(0, 0.5, -0.5);
40 points[11] = point(-0.5, 0, -0.5);
41 points[12] = point(-1, 0, -0.5);
42 points[13] = point(-2, 0, -0.5);
43 points[14] = point(-2, 0.707107, -0.5);
44 points[15] = point(-0.707107, 0.707107, -0.5);
45 points[16] = point(-0.353553, 0.353553, -0.5);
46 points[17] = point(-2, 2, -0.5);
47 points[18] = point(-0.707107, 2, -0.5);
48

49 // Duplicate z points
50 label sz = points.size();
51 points.setSize(2*sz);
52 for (label i = 0; i < sz; i++)
53 {
54 const point& pt = points[i];
55 points[i+sz] = point(pt.x(), pt.y(), -pt.z());
56 }
57

58 os << points;
59 #};
60 };
61

62

63 blocks
64 (
65 hex (5 4 9 10 24 23 28 29) (10 10 1) simpleGrading (1 1 1)
66 hex (0 1 4 5 19 20 23 24) (10 10 1) simpleGrading (1 1 1)
67 hex (1 2 3 4 20 21 22 23) (20 10 1) simpleGrading (1 1 1)
68 hex (4 3 6 7 23 22 25 26) (20 20 1) simpleGrading (1 1 1)
69 hex (9 4 7 8 28 23 26 27) (10 20 1) simpleGrading (1 1 1)
70 hex (15 16 10 9 34 35 29 28) (10 10 1) simpleGrading (1 1 1)

Open∇FOAM-v2006

T-48 Incompressible flow

71 hex (12 11 16 15 31 30 35 34) (10 10 1) simpleGrading (1 1 1)
72 hex (13 12 15 14 32 31 34 33) (20 10 1) simpleGrading (1 1 1)
73 hex (14 15 18 17 33 34 37 36) (20 20 1) simpleGrading (1 1 1)
74 hex (15 9 8 18 34 28 27 37) (10 20 1) simpleGrading (1 1 1)
75);
76

77 edges
78 (
79 arc 0 5 (0.469846 0.17101 -0.5)
80 arc 5 10 (0.17101 0.469846 -0.5)
81 arc 1 4 (0.939693 0.34202 -0.5)
82 arc 4 9 (0.34202 0.939693 -0.5)
83 arc 19 24 (0.469846 0.17101 0.5)
84 arc 24 29 (0.17101 0.469846 0.5)
85 arc 20 23 (0.939693 0.34202 0.5)
86 arc 23 28 (0.34202 0.939693 0.5)
87 arc 11 16 (-0.469846 0.17101 -0.5)
88 arc 16 10 (-0.17101 0.469846 -0.5)
89 arc 12 15 (-0.939693 0.34202 -0.5)
90 arc 15 9 (-0.34202 0.939693 -0.5)
91 arc 30 35 (-0.469846 0.17101 0.5)
92 arc 35 29 (-0.17101 0.469846 0.5)
93 arc 31 34 (-0.939693 0.34202 0.5)
94 arc 34 28 (-0.34202 0.939693 0.5)
95);
96

97 boundary
98 (
99 down

100 {
101 type symmetryPlane;
102 faces
103 (
104 (0 1 20 19)
105 (1 2 21 20)
106 (12 11 30 31)
107 (13 12 31 32)
108);
109 }
110 right
111 {
112 type patch;
113 faces
114 (
115 (2 3 22 21)
116 (3 6 25 22)
117);
118 }
119 up
120 {
121 type symmetryPlane;
122 faces
123 (
124 (7 8 27 26)
125 (6 7 26 25)
126 (8 18 37 27)
127 (18 17 36 37)
128);
129 }
130 left
131 {
132 type patch;
133 faces
134 (
135 (14 13 32 33)
136 (17 14 33 36)
137);
138 }
139 cylinder
140 {
141 type symmetry;
142 faces
143 (
144 (10 5 24 29)
145 (5 0 19 24)
146 (16 10 29 35)
147 (11 16 35 30)
148);
149 }
150);
151

152 mergePatchPairs
153 (
154);

Open∇FOAM-v2006

2.2 Flow around a cylinder T-49

155

156 // *** //

2.2.4 Boundary conditions and initial fields

Edit the case files to set the boundary conditions in accordance with the problem descrip-
tion in Figure 2.15, i.e. the left boundary should be an Inlet, the right boundary should
be an Outlet and the down and cylinder boundaries should be symmetryPlane. The top
boundary conditions is chosen so that we can make the most genuine comparison with
our analytical solution which uses the assumption that the domain is infinite in the y
direction. The result is that the normal gradient of U is small along a plane coinciding
with our boundary. We therefore impose the condition that the normal component is
zero, i.e. specify the boundary as a symmetryPlane, thereby ensuring that the comparison
with the analytical is reasonable.

2.2.5 Running the case

No fluid properties need be specified in this problem since the flow is assumed to be
incompressible and inviscid. In the system subdirectory, the controlDict specifies the
control parameters for the run. Note that since we assume steady flow, we only run for
1 time step:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2006 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * //
17

18 application potentialFoam;
19

20 startFrom latestTime;
21

22 startTime 0;
23

24 stopAt nextWrite;
25

26 endTime 1;
27

28 deltaT 1;
29

30 writeControl timeStep;
31

32 writeInterval 1;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48 functions
49 {
50 error

Open∇FOAM-v2006

T-50 Incompressible flow

51 {
52 name error;
53 type coded;
54 libs (utilityFunctionObjects);
55

56 codeEnd
57 #{
58 // Lookup U
59 Info<< "Looking up field U\n" << endl;
60 const volVectorField& U = mesh().lookupObject<volVectorField>("U");
61

62 Info<< "Reading inlet velocity uInfX\n" << endl;
63

64 scalar ULeft = 0.0;
65 label leftI = mesh().boundaryMesh().findPatchID("left");
66 const fvPatchVectorField& fvp = U.boundaryField()[leftI];
67 if (fvp.size())
68 {
69 ULeft = fvp[0].x();
70 }
71 reduce(ULeft, maxOp<scalar>());
72

73 dimensionedScalar uInfX("uInfx", dimVelocity, ULeft);
74

75 Info<< "U at inlet = " << uInfX.value() << " m/s" << endl;
76

77

78 scalar magCylinder = 0.0;
79 label cylI = mesh().boundaryMesh().findPatchID("cylinder");
80 const fvPatchVectorField& cylFvp = mesh().C().boundaryField()[cylI];
81 if (cylFvp.size())
82 {
83 magCylinder = mag(cylFvp[0]);
84 }
85 reduce(magCylinder, maxOp<scalar>());
86

87 dimensionedScalar radius("radius", dimLength, magCylinder);
88

89 Info<< "Cylinder radius = " << radius.value() << " m" << endl;
90

91 volVectorField UA
92 (
93 IOobject
94 (
95 "UA",
96 mesh().time().timeName(),
97 U.mesh(),
98 IOobject::NO_READ,
99 IOobject::AUTO_WRITE

100),
101 U
102);
103

104 Info<< "\nEvaluating analytical solution" << endl;
105

106 const volVectorField& centres = UA.mesh().C();
107 volScalarField magCentres(mag(centres));
108 volScalarField theta(acos((centres & vector(1,0,0))/magCentres));
109

110 volVectorField cs2theta
111 (
112 cos(2*theta)*vector(1,0,0)
113 + sin(2*theta)*vector(0,1,0)
114);
115

116 UA = uInfX*(dimensionedVector(vector(1,0,0))
117 - pow((radius/magCentres),2)*cs2theta);
118

119 // Force writing of UA (since time has not changed)
120 UA.write();
121

122 volScalarField error("error", mag(U-UA)/mag(UA));
123

124 Info<<"Writing relative error in U to " << error.objectPath()
125 << endl;
126

127 error.write();
128 #};
129 }
130 }
131

132

133 // *** //

Open∇FOAM-v2006

2.2 Flow around a cylinder T-51

potentialFoam executes an iterative loop around the pressure equation which it solves
in order that explicit terms relating to non-orthogonal correction in the Laplacian term
may be updated in successive iterations. The number of iterations around the pressure
equation is controlled by the nNonOrthogonalCorrectors keyword in the fvSolution dic-
tionary. In the first instance we can set nNonOrthogonalCorrectors to 0 so that no loops
are performed, i.e. the pressure equation is solved once, and there is no non-orthogonal
correction. The solution is shown in Figure 2.17(a) (at t = 1, when the steady-state sim-
ulation is complete). We expect the solution to show smooth streamlines passing across

(a) With no non-orthogonal correction

(b) With non-orthogonal correction

(c) Analytical solution

Figure 2.17: Streamlines of potential flow

the domain as in the analytical solution in Figure 2.17(c), yet there is clearly some error
in the regions where there is high non-orthogonality in the mesh, e.g. at the join of blocks
0, 1 and 3. The case can be run a second time with some non-orthogonal correction by
setting nNonOrthogonalCorrectors to 3. The solution shows smooth streamlines with
no significant error due to non-orthogonality as shown in Figure 2.17(b).

Open∇FOAM-v2006

T-52 Incompressible flow

2.3 Magnetohydrodynamic flow of a liquid

Tutorial path:

• $FOAM TUTORIALS/electromagnetics/mhdFoam/hartmann

In this example we shall investigate the flow of an electrically-conducting liquid through
a magnetic field. The problem belongs to the branch of fluid dynamics known as magne-
tohydrodynamics (MHD), simulated using the mhdFoam solver.

2.3.1 Problem specification

This case is known as the Hartmann problem, chosen as it contains an analytical solution
with which mhdFoam can be validated. It is defined as follows:

Solution domain The domain is 2 dimensional and consists of flow along two parallel
plates as shown in Fig. 2.18.

y

x
2

20

Outlet: p = 0 barInlet: Ux = 1 m/s

By = 20 T

Figure 2.18: Geometry of the Hartmann problem

Governing equations

• Mass continuity for incompressible fluid

∇ •U = 0 (2.16)

• Momentum equation for incompressible fluid

∂U

∂t
+∇ • (UU)+∇ • (2BΓBUB)+∇ • (νU)+∇ (ΓBUB

•

•B) = −∇p (2.17)

where B is the magnetic flux density, ΓBU = (2µρ)−1.

• Maxwell’s equations

∇× E = −∂B

∂t
(2.18)

where E is the electric field strength.

∇ •B = 0 (2.19)

∇×H = J+
∂D

∂t
= J (2.20)

assuming ∂D/∂t ≪ J. Here, H is the magnetic field strength, J is the current
density and D is the electric flux density.

Open∇FOAM-v2006

https://develop.openfoam.com/Development/OpenFOAM-plus/tree/master/tutorials/electromagnetics/mhdFoam/hartmann

2.3 Magnetohydrodynamic flow of a liquid T-53

• Charge continuity

∇ •J = 0 (2.21)

• Constitutive law

B = µH (2.22)

• Ohm’s law

J = σ (E+U×B) (2.23)

• Combining Equation 2.18, Equation 2.20, Equation 2.23, and taking the curl

∂B

∂t
+∇ • (UB)−∇ • (φBU)−∇ • (ΓBB) = 0 (2.24)

Boundary conditions

• inlet is specified the inlet condition with fixed velocity U = (1, 0, 0) m/s;

• outlet is specified as the outlet with with fixed pressure p = 0 Pa;

• upperWall is specified as a wall where B = (0, 20, 0) T.

• lowerWall is specified as a wall where B = (0, 20, 0) T.

• front and back boundaries are specified as empty.

Initial conditions U = 0 m/s, p = 100 Pa, B = (0, 20, 0) T.

Transport properties

• Kinematic viscosity ν = 1 Pa s

• Density ρ = 1 kgm/s

• Electrical conductivity σ = 1 (Ωm)−1

• Permeability µ = 1 H/m

Solver name mhdFoam: an incompressible laminar magneto-hydrodynamics code.

Case name hartmann case located in the $FOAM TUTORIALS/electromagnetics/mhd-
Foam directory.

2.3.2 Mesh generation

The geometry is simply modelled with 100 cells in the x-direction and 40 cells in the
y-direction; the set of vertices and blocks are given in the mesh description file below:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2006 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object blockMeshDict;
14 }

Open∇FOAM-v2006

T-54 Incompressible flow

15 // * //
16

17 scale 1;
18

19 vertices
20 (
21 (0 -1 0)
22 (20 -1 0)
23 (20 1 0)
24 (0 1 0)
25 (0 -1 0.1)
26 (20 -1 0.1)
27 (20 1 0.1)
28 (0 1 0.1)
29);
30

31 blocks
32 (
33 hex (0 1 2 3 4 5 6 7) (100 40 1) simpleGrading (1 1 1)
34);
35

36 edges
37 (
38);
39

40 boundary
41 (
42 inlet
43 {
44 type patch;
45 faces
46 (
47 (0 4 7 3)
48);
49 }
50 outlet
51 {
52 type patch;
53 faces
54 (
55 (2 6 5 1)
56);
57 }
58 lowerWall
59 {
60 type patch;
61 faces
62 (
63 (1 5 4 0)
64);
65 }
66 upperWall
67 {
68 type patch;
69 faces
70 (
71 (3 7 6 2)
72);
73 }
74 frontAndBack
75 {
76 type empty;
77 faces
78 (
79 (0 3 2 1)
80 (4 5 6 7)
81);
82 }
83);
84

85 mergePatchPairs
86 (
87);
88

89 // *** //

2.3.3 Running the case

The user can run the case and view results in ParaView. It is also useful at this stage to run
the Ucomponents utility to convert the U vector field into individual scalar components.
MHD flow is governed by, amongst other things, the Hartmann number which is a measure

Open∇FOAM-v2006

2.3 Magnetohydrodynamic flow of a liquid T-55

of the ratio of electromagnetic body force to viscous force

M = BL

√

σ

ρν
(2.25)

where L is the characteristic length scale. In this case with By = 20 T, M = 20 and
the electromagnetic body forces dominate the viscous forces. Consequently with the flow
fairly steady at t = 2 s the velocity profile is almost planar, viewed at a cross section
midway along the domain x = 10 m. The user can plot a graph of the profile of Ux in
dxFoam. Now the user should reduce the magnetic flux density B to 1 Tand re-run the

0.0 1.0
-1.0

0.0

+1.0

y (m)

0.5 1.5

By = 20 T

Ux (m/s)

By = 1 T

Figure 2.19: Velocity profile in the Hartmann problem for By = 1 T and By = 20 T.

code and Ucomponents. In this case, M = 1 and the electromagnetic body forces no longer
dominate. The velocity profile consequently takes on the parabolic form, characteristic
of Poiseuille flow as shown in Figure 2.19. To validate the code the analytical solution
for the velocity profile Ux is superimposed in Figure 2.19, given by:

Ux(y)

Ux(0)
=

coshM − coshM(y/L)

coshM − 1
(2.26)

where the characteristic length L is half the width of the domain, i.e. 1 m.

Open∇FOAM-v2006

T-56 Incompressible flow

Open∇FOAM-v2006

Chapter 3

Compressible flow

T-58 Compressible flow

3.1 Steady turbulent flow over a backward-facing step

Tutorial path:

• $FOAM TUTORIALS/incompressible/simpleFoam/pitzDaily

In this example we shall investigate steady turbulent flow over a backward-facing step.
The problem description is taken from one used by Pitz and Daily in an experimental
investigation [**] against which the computed solution can be compared. This example
introduces the following OpenFOAM features for the first time:

• generation of a mesh using blockMesh using full mesh grading capability;

• steady turbulent flow.

3.1.1 Problem specification

The problem is defined as follows:

Solution domain The domain is 2 dimensional, consisting of a short inlet, a backward-
facing step and converging nozzle at outlet as shown in Figure 3.1.

84.020.6 206.0

Inlet: Ux = 10.0 m/s Outlet: p = 0 Pa

50.8 33.2

y

x

Dimensions in mm

Figure 3.1: Geometry of backward-facing step

Governing equations

• Mass continuity for incompressible flow

∇ •U = 0 (3.1)

• Steady flow momentum equation

∇ • (UU) +∇ •R = −∇p (3.2)

where p is kinematic pressure and (in slightly over-simplistic terms) R =
νeff∇U is the viscous stress term with an effective kinematic viscosity νeff ,
calculated from selected transport and turbulence models.

Initial conditions U = 0 m/s, p = 0 Pa — required in OpenFOAM input files but not
necessary for the solution since the problem is steady-state.

Boundary conditions

Open∇FOAM-v2006

https://develop.openfoam.com/Development/OpenFOAM-plus/tree/master/tutorials/incompressible/simpleFoam/pitzDaily

3.1 Steady turbulent flow over a backward-facing step T-59

• Inlet (left) with fixed velocity U = (10, 0, 0) m/s;

• Outlet (right) with fixed pressure p = 0 Pa;

• No-slip walls on other boundaries.

Transport properties

• Kinematic viscosity of air ν = µ/ρ = 18.1× 10−6/1.293 = 14.0 µm2/s

Turbulence model

• Standard k − ǫ;

• Coefficients: Cµ = 0.09;C1 = 1.44;C2 = 1.92;αk = 1;αǫ = 0.76923.

Solver name simpleFoam: an implementation for steady incompressible flow.

Case name pitzDaily, located in the $FOAM TUTORIALS/incompressible/simpleFoam
directory.

The problem is solved using simpleFoam, so-called as it is an implementation for steady
flow using the SIMPLE algorithm. The solver has full access to all the turbulence models
in the incompressibleTurbulenceModels library and the non-Newtonian models incompress-
ibleTransportModels library of the standard OpenFOAM release.

3.1.2 Mesh generation

We expect that the flow in this problem is reasonably complex and an optimum solution
will require grading of the mesh. In general, the regions of highest shear are particularly
critical, requiring a finer mesh than in the regions of low shear. We can anticipate
where high shear will occur by considering what the solution might be in advance of any
calculation. At the inlet we have strong uniform flow in the x direction and, as it passes
over the step, it generates shear on the fluid below, generating a vortex in the bottom
half of the domain. The regions of high shear will therefore be close to the centreline of
the domain and close to the walls.

The domain is subdivided into 12 blocks as shown in Figure 3.2.

1

14

13

12

11

3

7

8
2

1

5

4 10

2

3

4

6

7

8

9

11

0 5

10

16

17

19
20

21

18

9 15

12

upperWall

outlet
0 6

inlet

lowerWall

Figure 3.2: Blocks in backward-facing step

The mesh is 3 dimensional, as always in OpenFOAM, so in Figure 3.2 we are viewing
the back plane along z = −0.5. The full set of vertices and blocks are given in the mesh
description file below:

Open∇FOAM-v2006

T-60 Compressible flow

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2006 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object blockMeshDict;
14 }
15 // * //
16

17 scale 0.001;
18

19 vertices
20 (
21 (-20.6 0 -0.5)
22 (-20.6 25.4 -0.5)
23 (0 -25.4 -0.5)
24 (0 0 -0.5)
25 (0 25.4 -0.5)
26 (206 -25.4 -0.5)
27 (206 0 -0.5)
28 (206 25.4 -0.5)
29 (290 -16.6 -0.5)
30 (290 0 -0.5)
31 (290 16.6 -0.5)
32

33 (-20.6 0 0.5)
34 (-20.6 25.4 0.5)
35 (0 -25.4 0.5)
36 (0 0 0.5)
37 (0 25.4 0.5)
38 (206 -25.4 0.5)
39 (206 0 0.5)
40 (206 25.4 0.5)
41 (290 -16.6 0.5)
42 (290 0 0.5)
43 (290 16.6 0.5)
44);
45

46 negY
47 (
48 (2 4 1)
49 (1 3 0.3)
50);
51

52 posY
53 (
54 (1 4 2)
55 (2 3 4)
56 (2 4 0.25)
57);
58

59 posYR
60 (
61 (2 1 1)
62 (1 1 0.25)
63);
64

65

66 blocks
67 (
68 hex (0 3 4 1 11 14 15 12)
69 (18 30 1)
70 simpleGrading (0.5 $posY 1)
71

72 hex (2 5 6 3 13 16 17 14)
73 (180 27 1)
74 edgeGrading (4 4 4 4 $negY 1 1 $negY 1 1 1 1)
75

76 hex (3 6 7 4 14 17 18 15)
77 (180 30 1)
78 edgeGrading (4 4 4 4 $posY $posYR $posYR $posY 1 1 1 1)
79

80 hex (5 8 9 6 16 19 20 17)
81 (25 27 1)
82 simpleGrading (2.5 1 1)
83

84 hex (6 9 10 7 17 20 21 18)
85 (25 30 1)

Open∇FOAM-v2006

3.1 Steady turbulent flow over a backward-facing step T-61

86 simpleGrading (2.5 $posYR 1)
87);
88

89 edges
90 (
91);
92

93 boundary
94 (
95 inlet
96 {
97 type patch;
98 faces
99 (

100 (0 1 12 11)
101);
102 }
103 outlet
104 {
105 type patch;
106 faces
107 (
108 (8 9 20 19)
109 (9 10 21 20)
110);
111 }
112 upperWall
113 {
114 type wall;
115 faces
116 (
117 (1 4 15 12)
118 (4 7 18 15)
119 (7 10 21 18)
120);
121 }
122 lowerWall
123 {
124 type wall;
125 faces
126 (
127 (0 3 14 11)
128 (3 2 13 14)
129 (2 5 16 13)
130 (5 8 19 16)
131);
132 }
133 frontAndBack
134 {
135 type empty;
136 faces
137 (
138 (0 3 4 1)
139 (2 5 6 3)
140 (3 6 7 4)
141 (5 8 9 6)
142 (6 9 10 7)
143 (11 14 15 12)
144 (13 16 17 14)
145 (14 17 18 15)
146 (16 19 20 17)
147 (17 20 21 18)
148);
149 }
150);
151

152 // *** //

A major feature of this problem is the use of the full mesh grading capability of
blockMesh that is described in section 4.3.1 of the User Guide. The user can see that
blocks 4,5 and 6 use the full list of 12 expansion ratios. The expansion ratios correspond
to each edge of the block, the first 4 to the edges aligned in the local x1 direction, the
second 4 to the edges in the local x2 direction and the last 4 to the edges in the local x3

direction. In blocks 4, 5, and 6, the ratios are equal for all edges in the local x1 and x3

directions but not for the edges in the x2 direction that corresponds in all blocks to the
global y. If we consider the ratios used in relation to the block definition in section 4.3.1
of the User Guide, we realize that different gradings have been prescribed along the left
and right edges in blocks 4,5 and 6 in Figure 3.2. The purpose of this differential grading

Open∇FOAM-v2006

T-62 Compressible flow

is to generate a fine mesh close to the most critical region of flow, the corner of the step,
and allow it to expand into the rest of the domain.

The mesh can be generated using blockMesh from the command line and viewed as
described in previous examples.

3.1.3 Boundary conditions and initial fields

Edit the case files to set the initial and boundary fields for velocityU, pressure p, turbulent
kinetic energy k and dissipation rate ε. The boundary conditions can be specified as: the
upper and lower walls are set to Wall, the left patch to Inlet and the right patch to
Outlet. These physical boundary conditions require us to specify a fixedValue at the
inlet on U, k and ε. U is given in the problem specification, but the values of k and
ǫ must be chosen by the user in a similar manner to that described in section 2.1.8.1
of the User Guide. We assume that the inlet turbulence is isotropic and estimate the
fluctuations to be 5% of U at the inlet. We have

U ′

x = U ′

y = U ′

z =
5

100
10 = 0.5 m/s (3.3)

and

k =
3

2
(0.5)2 = 0.375 m2/s2 (3.4)

If we estimate the turbulent length scale l to be 10% of the width of the inlet then

ε =
C0.75

µ k1.5

l
=

0.090.750.3751.5

0.1× 25.4× 10−3
= 14.855m2/s3 (3.5)

At the outlet we need only specify the pressure p = 0Pa.

3.1.4 Case control

The choices of fvSchemes are as follows: the timeScheme should be steadyState; the
gradSchemes and laplacianSchemes should be set as default to Gauss; and, the divSchemes
should be set to upwind to ensure boundedness.

Special attention should be paid to the solver settings of the fvSolution dictionary.
Although the top level simpleFoam code contains only equations for p and U, the tur-
bulence model solves equations for k, ε and R, and tolerance settings are required for
all 5 equations. A tolerance of 10−5 and relTol of 0.1 are acceptable for all variables
with the exception of p when 10−6 and 0.01 are recommended. Under-relaxation of the
solution is required since the problem is steady. A relaxationFactor of 0.7 is acceptable
for U, k, and ε but 0.3 is required for p to avoid numerical instability.

Finally, in the controlDict dictionary, the time step deltaT should be set to 1 since in
steady state cases such as this is effectively an iteration counter. With benefit of hindsight
we know that the solution requires 1000 iterations reach reasonable convergence, hence
endTime is set to 1000. Ensure that the writeInterval is sufficiently high, e.g. 50, that
you will not fill the hard disk with data during run time.

3.1.5 Running the case and post-processing

Run the case and post-process the results. After a few iterations, e.g. 50, a vortex develops
beneath the corner of the step that is the height of the step but narrow in the x-direction
as shown by the vector plot of velocities is shown Figure 3.3(a). Over several iterations

Open∇FOAM-v2006

3.1 Steady turbulent flow over a backward-facing step T-63

(a) Velocity vectors after 50 iterations

(b) Velocity vectors at 1000 iterations

(c) Streamlines at 1000 iterations

Figure 3.3: Development of a vortex in the backward-facing step.

the vortex stretches in the x-direction from the step to the outlet until at 1000 iterations
the system reaches a steady-state in which the vortex is fully developed as shown in
Figure 3.3(b-c).

Open∇FOAM-v2006

T-64 Compressible flow

3.2 Supersonic flow over a forward-facing step

Tutorial path:

• $FOAM TUTORIALS/compressible/sonicFoam/laminar/forwardStep

In this example we shall investigate supersonic flow over a forward-facing step. The
problem description involves a flow of Mach 3 at an inlet to a rectangular geometry with
a step near the inlet region that generates shock waves.

This example introduces the following OpenFOAM features for the first time:

• supersonic flow;

3.2.1 Problem specification

The problem is defined as follows:

Solution domain The domain is 2 dimensional and consists of a short inlet section
followed by a forward-facing step of 20% the height of the section as shown in
Figure 3.4

y
0.2

Inlet: Ux = Mach 3, p = 1 N/m2

x

1.0

0.6 2.4
Dimensions in m

Figure 3.4: Geometry of the forward step geometry

Governing equations

• Mass continuity

∂ρ

∂t
+∇ • (ρU) = 0 (3.6)

• Ideal gas

p = ρRT (3.7)

• Momentum equation for Newtonian fluid

∂ρU

∂t
+∇ • (ρUU)−∇ •µ∇U = −∇p (3.8)

• Energy equation for fluid (ignoring some viscous terms), e = CvT , with Fourier’s
Law q = −k∇T

∂ρe

∂t
+∇ • (ρUe)−∇ •

(

k

Cv

)

∇e = p∇ •U (3.9)

Open∇FOAM-v2006

https://develop.openfoam.com/Development/OpenFOAM-plus/tree/master/tutorials/compressible/sonicFoam/laminar/forwardStep

3.2 Supersonic flow over a forward-facing step T-65

Initial conditions U = 0 m/s, p = 1 Pa, T = 1 K.

Boundary conditions

• Inlet (left) with fixedValue for velocity U = 3 m/s = Mach 3, pressure p = 1 Pa
and temperature T = 1 K;

• Outlet (right) with zeroGradient on U , p and T ;

• No-slip adiabatic wall (bottom);

• Symmetry plane (top).

Transport properties

• Dynamic viscosity of air µ = 18.1µPa s

Thermodynamic properties

• Specific heat at constant volume Cv = 1.78571 J/kgK

• Gas constant R = 0.714286 J/kgK

• Conductivity k = 32.3 µW/mK

Case name forwardStep case located in the $FOAM TUTORIALS/compressible/sonic-
Foam/laminar directory.

Solver name sonicFoam: an implementation for compressible trans-sonic/supersonic
laminar gas flow.

The case is designed such that the speed of sound of the gas c =
√
γRT = 1 m/s, the

consequence being that the velocities are directly equivalent to the Mach number, e.g.
the inlet velocity of 3 m/s is equivalent to Mach 3. This speed of sound calculation can
be verified using the relationship for a perfect gas, Cp −Cv = R, i.e. the ratio of specific
heats

γ = Cp/Cv =
R

Cv

+ 1 (3.10)

3.2.2 Mesh generation

The mesh used in this case is relatively simple, specified with uniform rectangular cells
of length 0.06 m in the x direction and 0.05 m in the y direction. The geometry can
simply be divided into 3 blocks, one below the top of the step, and two above the step,
one either side of the step front. The full set of vertices and blocks are given in the mesh
description file below:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2006 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object blockMeshDict;
14 }
15 // * //
16

17 scale 1;

Open∇FOAM-v2006

T-66 Compressible flow

18

19 vertices
20 (
21 (0 0 -0.05)
22 (0.6 0 -0.05)
23 (0 0.2 -0.05)
24 (0.6 0.2 -0.05)
25 (3 0.2 -0.05)
26 (0 1 -0.05)
27 (0.6 1 -0.05)
28 (3 1 -0.05)
29 (0 0 0.05)
30 (0.6 0 0.05)
31 (0 0.2 0.05)
32 (0.6 0.2 0.05)
33 (3 0.2 0.05)
34 (0 1 0.05)
35 (0.6 1 0.05)
36 (3 1 0.05)
37);
38

39 blocks
40 (
41 hex (0 1 3 2 8 9 11 10) (25 10 1) simpleGrading (1 1 1)
42 hex (2 3 6 5 10 11 14 13) (25 40 1) simpleGrading (1 1 1)
43 hex (3 4 7 6 11 12 15 14) (100 40 1) simpleGrading (1 1 1)
44);
45

46 edges
47 (
48);
49

50 boundary
51 (
52 inlet
53 {
54 type patch;
55 faces
56 (
57 (0 8 10 2)
58 (2 10 13 5)
59);
60 }
61 outlet
62 {
63 type patch;
64 faces
65 (
66 (4 7 15 12)
67);
68 }
69 bottom
70 {
71 type symmetryPlane;
72 faces
73 (
74 (0 1 9 8)
75);
76 }
77 top
78 {
79 type symmetryPlane;
80 faces
81 (
82 (5 13 14 6)
83 (6 14 15 7)
84);
85 }
86 obstacle
87 {
88 type patch;
89 faces
90 (
91 (1 3 11 9)
92 (3 4 12 11)
93);
94 }
95);
96

97 mergePatchPairs
98 (
99);

100

101 // *** //

Open∇FOAM-v2006

3.2 Supersonic flow over a forward-facing step T-67

3.2.3 Running the case

The case approaches a steady-state at some time after 10 s. The results for pressure at
2 s are shown in Figure 3.5. The results clearly show discontinuities in pressure, i.e. shock
waves, emanating from ahead of the base of the step.

6

8

10

12

4

2

14

pressure
Shock fronts

Figure 3.5: Shock fronts in the forward step problem

3.2.4 Exercise

The user can examine the effect on the solution of increasing the inlet velocity.

Open∇FOAM-v2006

T-68 Compressible flow

3.3 Decompression of a tank internally pressurised

with water

Tutorial path:

• $FOAM TUTORIALS/compressible/sonicLiquidFoam/decompressionTank

In this example we shall investigate a problem of rapid opening of a pipe valve close to
a pressurised liquid-filled tank. The prominent feature of the result in such cases is the
propagation of pressure waves which must therefore be modelled as a compressible liquid.

This tutorial introduces the following OpenFOAM features for the first time:

• Mesh refinement

• Pressure waves in liquids

3.3.1 Problem specification

Solution domain The domain is 2 dimensional and consists of a tank with a small
outflow pipe as shown in Figure 3.6

x

y

Outlet: p = 0 bar
24050

10

50

100

orientation of horizontal x-axis
Note:
Dimensions in mm

image is rotated through -90◦ from normal

Figure 3.6: Geometry of a tank with outflow pipe

Governing equations This problem requires a model for compressibility ψ in the fluid
in order to be able to resolve waves propagating at a finite speed. A barotropic
relationship is used to relate density ρ and pressure p are related to ψ.

• Mass continuity

∂ρ

∂t
+∇ • (ρU) = 0 (3.11)

• The barotropic relationship

∂ρ

∂p
=

ρ

K
= ψ (3.12)

where K is the bulk modulus

• Equation 3.12 is linearised as

ρ ≈ ρ0 + ψ (p− p0) (3.13)

where ρ0 and p0 are the reference density and pressure respectively such that
ρ(p0) = ρ0.

Open∇FOAM-v2006

https://develop.openfoam.com/Development/OpenFOAM-plus/tree/master/tutorials/compressible/sonicLiquidFoam/decompressionTank

3.3 Decompression of a tank internally pressurised with water T-69

• Momentum equation for Newtonian fluid

∂ρU

∂t
+∇ • (ρUU)−∇ •µ∇U = −∇p (3.14)

Boundary conditions

• outerWall is specified the wall condition;

• axis is specified as the symmetryPlane;

• nozzle is specified as a pressureOutlet where p = 0 bar.

• front and back boundaries are specified as empty.

Initial conditions U = 0 m/s, p = 100 bar.

Transport properties

• Dynamic viscosity of water µ = 1.0 mPa s

Thermodynamic properties

• Density of water ρ = 1000 kg/m3

• Reference pressure p0 = 1 bar

• Compressibility of water ψ = 4.54× 10−7 s2/m2

Solver name sonicLiquidFoam: a solver for compressible sonic laminar liquid flow.

Case name decompressionTank case located in the $FOAM TUTORIALS/compressible/-
sonicLiquidFoam directory.

3.3.2 Mesh Generation

The full geometry is modelled in this case; the set of vertices and blocks are given in the
mesh description file below:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2006 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object blockMeshDict;
14 }
15 // * //
16

17 scale 0.1;
18

19 vertices
20 (
21 (0 0 -0.1)
22 (1 0 -0.1)
23 (0 0.5 -0.1)
24 (1 0.5 -0.1)
25 (1.5 0.5 -0.1)
26 (0 0.6 -0.1)
27 (1 0.6 -0.1)
28 (1.5 0.6 -0.1)
29 (0 3 -0.1)
30 (1 3 -0.1)
31 (0 0 0.1)

Open∇FOAM-v2006

T-70 Compressible flow

32 (1 0 0.1)
33 (0 0.5 0.1)
34 (1 0.5 0.1)
35 (1.5 0.5 0.1)
36 (0 0.6 0.1)
37 (1 0.6 0.1)
38 (1.5 0.6 0.1)
39 (0 3 0.1)
40 (1 3 0.1)
41);
42

43 blocks
44 (
45 hex (0 1 3 2 10 11 13 12) (30 20 1) simpleGrading (1 1 1)
46 hex (2 3 6 5 12 13 16 15) (30 5 1) simpleGrading (1 1 1)
47 hex (3 4 7 6 13 14 17 16) (25 5 1) simpleGrading (1 1 1)
48 hex (5 6 9 8 15 16 19 18) (30 95 1) simpleGrading (1 1 1)
49);
50

51 edges
52 (
53);
54

55 boundary
56 (
57 outerWall
58 {
59 type wall;
60 faces
61 (
62 (0 1 11 10)
63 (1 3 13 11)
64 (3 4 14 13)
65 (7 6 16 17)
66 (6 9 19 16)
67 (9 8 18 19)
68);
69 }
70 axis
71 {
72 type symmetryPlane;
73 faces
74 (
75 (0 10 12 2)
76 (2 12 15 5)
77 (5 15 18 8)
78);
79 }
80 nozzle
81 {
82 type patch;
83 faces
84 (
85 (4 7 17 14)
86);
87 }
88 back
89 {
90 type empty;
91 faces
92 (
93 (0 2 3 1)
94 (2 5 6 3)
95 (3 6 7 4)
96 (5 8 9 6)
97);
98 }
99 front

100 {
101 type empty;
102 faces
103 (
104 (10 11 13 12)
105 (12 13 16 15)
106 (13 14 17 16)
107 (15 16 19 18)
108);
109 }
110);
111

112 mergePatchPairs
113 (
114);
115

116 // *** //

Open∇FOAM-v2006

3.3 Decompression of a tank internally pressurised with water T-71

In order to improve the numerical accuracy, we shall use the reference level of 1 bar for
the pressure field. Note that both the internal field level and the boundary conditions are
offset by the reference level.

3.3.3 Preparing the Run

Before we commence the setup of the calculation, we need to consider the characteristic
velocity of the phenomenon we are trying to capture. In the case under consideration,
the fluid velocity will be very small, but the pressure wave will propagate with the speed
of sound in water. The speed of sound is calculated as:

c =

√

1

ψ
=

√

1

4.54× 10−7
= 1483.2m/s. (3.15)

For the mesh described above, the characteristic mesh size is approximately 2 mm (note
the scaling factor of 0.1 in the blockMeshDict file). Using

Co =
U ∆t

∆x
(3.16)

a reasonable time step is around ∆t = 5× 10−7s, giving the Co number of 0.35, based on
the speed of sound. Also, note that the reported Co number by the code (associated with
the convective velocity) will be two orders of magnitude smaller. As we are interested in
the pressure wave propagation, we shall set the simulation time to 0.25 ms. For reference,
the controlDict file is quoted below.

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2006 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * //
17

18 application sonicLiquidFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 0.0001;
27

28 deltaT 5e-07;
29

30 writeControl timeStep;
31

32 writeInterval 20;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;

Open∇FOAM-v2006

T-72 Compressible flow

45

46 runTimeModifiable true;
47

48

49 // *** //

3.3.4 Running the case

0

10

20

30

40

50

60

70

80

90

100

(a) At t = 50 µs (b) At t = 100 µs (c) At t = 150 µs

Pressure, p
(bar)

Figure 3.7: Propagation of pressure waves

The user can run the case and view results in dxFoam. The liquid flows out through
the nozzle causing a wave to move along the nozzle. As it reaches the inlet to the tank,
some of the wave is transmitted into the tank and some of it is reflected. While a wave
is reflected up and down the inlet pipe, the waves transmitted into the tank expand and
propagate through the tank. In Figure 3.7, the pressures are shown as contours so that
the wave fronts are more clearly defined than if plotted as a normal isoline plot.

If the simulation is run for a long enough time for the reflected wave to return to
the pipe, we can see that negative absolute pressure is detected. The modelling permits
this and has some physical basis since liquids can support tension, i.e. negative pressures.
In reality, however, impurities or dissolved gases in liquids act as sites for cavitation,
or vapourisation/boiling, of the liquid due to the low pressure. Therefore in practical
situations, we generally do not observe pressures falling below the vapourisation pressure
of the liquid; not at least for longer than it takes for the cavitation process to occur.

3.3.5 Improving the solution by refining the mesh

Looking at the evolution of the resulting pressure field in time, we can clearly see the
propagation of the pressure wave into the tank and numerous reflections from the inside
walls. It is also obvious that the pressure wave is smeared over a number of cells. We shall
now refine the mesh and reduce the time step to obtain a sharper front resolution. Simply
edit the blockMeshDict and increase the number of cells by a factor of 4 in the x and y

Open∇FOAM-v2006

3.3 Decompression of a tank internally pressurised with water T-73

0

10

20

30

40

50

60

70

80

90

100

(a) At t = 50 µs (b) At t = 100 µs (c) At t = 150 µs

Pressure, p
(bar)

Figure 3.8: Propagation of pressure waves with refined mesh

directions, i.e. block 0 becomes (120 80 1) from (30 20 1) and so on. Run blockMesh
on this file. In addition, in order to maintain a Courant number below 1, the time step
must be reduced accordingly to ∆t = 10−7 s. The second simulation gives considerably
better resolution of the pressure waves as shown in Figure 3.8.

Open∇FOAM-v2006

T-74 Compressible flow

Open∇FOAM-v2006

Chapter 4

Multiphase flow

T-76 Multiphase flow

4.1 Breaking of a dam

Tutorial path:

• $FOAM TUTORIALS/multiphase/interFoam/laminar/damBreak/damBreak

This example introduces the following OpenFOAM features for the first time:

• multiphase flow using VOF interface capturing method

• non-uniform initial conditions setup using setFields utility

• running case in parallel

• post-processing a case in parallel

4.1.1 Problem specification

In this tutorial we shall solve a problem of simplified dam break in 2 dimensions using
the interFoam.The feature of the problem is a transient flow of two fluids separated by
a sharp interface, or free surface. The two-phase algorithm in interFoam is based on the
volume of fluid (VOF) method in which a specie transport equation is used to determine
the relative volume fraction of the two phases, or phase fraction α, in each computational
cell. Physical properties are calculated as weighted averages based on this fraction. The
nature of the VOF method means that an interface between the species is not explicitly
computed, but rather emerges as a property of the phase fraction field. Since the phase
fraction can have any value between 0 and 1, the interface is never sharply defined, but
occupies a volume around the region where a sharp interface should exist.

The test setup consists of a column of water at rest located behind a membrane on
the left side of a tank. At time t = 0 s, the membrane is removed and the column of
water collapses. During the collapse, the water impacts an obstacle at the bottom of the
tank and creates a complicated flow structure, including several captured pockets of air.
The geometry and the initial setup is shown in Figure 4.1.

4.1.2 Mesh generation

The user should go to the damBreak case in their $FOAM RUN/tutorials/multiphase/inter-
Foam/laminar directory. Generate the mesh running blockMesh as described previously.
The damBreak mesh consist of 5 blocks; the blockMeshDict entries are given below.

17 scale 0.146;
18

19 vertices
20 (
21 (0 0 0)
22 (2 0 0)
23 (2.16438 0 0)
24 (4 0 0)
25 (0 0.32876 0)
26 (2 0.32876 0)
27 (2.16438 0.32876 0)
28 (4 0.32876 0)
29 (0 4 0)
30 (2 4 0)
31 (2.16438 4 0)
32 (4 4 0)
33 (0 0 0.1)
34 (2 0 0.1)
35 (2.16438 0 0.1)
36 (4 0 0.1)
37 (0 0.32876 0.1)
38 (2 0.32876 0.1)
39 (2.16438 0.32876 0.1)

Open∇FOAM-v2006

https://develop.openfoam.com/Development/OpenFOAM-plus/tree/master/tutorials/multiphase/interFoam/laminar/damBreak/damBreak

4.1 Breaking of a dam T-77

0.584 m

0.048 m

0.024 m

0.584 m

0.292 m

0.1459 m0.1461 m

water column

Figure 4.1: Geometry of the dam break.

40 (4 0.32876 0.1)
41 (0 4 0.1)
42 (2 4 0.1)
43 (2.16438 4 0.1)
44 (4 4 0.1)
45);
46

47 blocks
48 (
49 hex (0 1 5 4 12 13 17 16) (23 8 1) simpleGrading (1 1 1)
50 hex (2 3 7 6 14 15 19 18) (19 8 1) simpleGrading (1 1 1)
51 hex (4 5 9 8 16 17 21 20) (23 42 1) simpleGrading (1 1 1)
52 hex (5 6 10 9 17 18 22 21) (4 42 1) simpleGrading (1 1 1)
53 hex (6 7 11 10 18 19 23 22) (19 42 1) simpleGrading (1 1 1)
54);
55

56 edges
57 (
58);
59

60 boundary
61 (
62 leftWall
63 {
64 type wall;
65 faces
66 (
67 (0 12 16 4)
68 (4 16 20 8)
69);
70 }
71 rightWall
72 {
73 type wall;
74 faces
75 (
76 (7 19 15 3)
77 (11 23 19 7)
78);
79 }
80 lowerWall
81 {
82 type wall;
83 faces
84 (
85 (0 1 13 12)
86 (1 5 17 13)
87 (5 6 18 17)

Open∇FOAM-v2006

T-78 Multiphase flow

88 (2 14 18 6)
89 (2 3 15 14)
90);
91 }
92 atmosphere
93 {
94 type patch;
95 faces
96 (
97 (8 20 21 9)
98 (9 21 22 10)
99 (10 22 23 11)

100);
101 }
102);
103

104 mergePatchPairs
105 (
106);
107

108 // *** //

4.1.3 Boundary conditions

The user can examine the boundary geometry generated by blockMesh by viewing the
boundary file in the constant/polyMesh directory. The file contains a list of 5 boundary
patches: leftWall, rightWall, lowerWall, atmosphere and defaultFaces. The user
should notice the type of the patches. The atmosphere is a standard patch, i.e. has no
special attributes, merely an entity on which boundary conditions can be specified. The
defaultFaces patch is empty since the patch normal is in the direction we will not solve
in this 2D case. The leftWall, rightWall and lowerWall patches are each a wall. Like
the plain patch, the wall type contains no geometric or topological information about the
mesh and only differs from the plain patch in that it identifies the patch as a wall, should
an application need to know, e.g. to apply special wall surface modelling.

A good example is that the interFoam solver includes modelling of surface tension
at the contact point between the interface and wall surface. The models are applied
by specifying the alphaContactAngle boundary condition on the alpha.water (α) field.
With it, the user must specify the following: a static contact angle, theta0 θ0; leading
and trailing edge dynamic contact angles, thetaA θA and thetaR θR respectively; and a
velocity scaling function for dynamic contact angle, uTheta.

In this tutorial we would like to ignore surface tension effects between the wall and
interface. We can do this by setting the static contact angle, θ0 = 90◦ and the velocity
scaling function to 0. However, the simpler option which we shall choose here is to specify
a zeroGradient type on alpha.water, rather than use the alphaContactAngle boundary
condition.

The top boundary is free to the atmosphere so needs to permit both outflow and inflow
according to the internal flow. We therefore use a combination of boundary conditions
for pressure and velocity that does this while maintaining stability. They are:

• totalPressure which is a fixedValue condition calculated from specified total pressure
p0 and local velocity U;

• pressureInletOutletVelocity, which applies zeroGradient on all components, except
where there is inflow, in which case a fixedValue condition is applied to the tangential
component;

• inletOutlet, which is a zeroGradient condition when flow outwards, fixedValue when
flow is inwards.

At all wall boundaries, the fixedFluxPressure boundary condition is applied to the pressure
field, which calculates the normal gradient from the local density gradient.

Open∇FOAM-v2006

4.1 Breaking of a dam T-79

The defaultFaces patch representing the front and back planes of the 2D problem,
is, as usual, an empty type.

4.1.4 Setting initial field

Unlike the previous cases, we shall now specify a non-uniform initial condition for the
water phase fraction, α, where

α =

{

1 for the liquid phase

0 for the gas phase
(4.1)

This is achieved by running the setFields utility. It requires a setFieldsDict dictionary,
located in the system directory, whose entries for this case are shown below.

17

18 defaultFieldValues
19 (
20 volScalarFieldValue alpha.water 0
21);
22

23 regions
24 (
25 boxToCell
26 {
27 box (0 0 -1) (0.1461 0.292 1);
28 fieldValues
29 (
30 volScalarFieldValue alpha.water 1
31);
32 }
33);
34

35

36 // *** //

The defaultFieldValues sets the default value of the fields, i.e. the value the field
takes unless specified otherwise in the regions sub-dictionary. That sub-dictionary con-
tains a list of subdictionaries containing fieldValues that override the defaults in a
specified region. The region is expressed in terms of a topoSetSource that creates a set
of points, cells or faces based on some topological constraint. Here, boxToCell creates
a bounding box within a vector minimum and maximum to define the set of cells of the
liquid region. The phase fraction α is defined as 1 in this region.

The setFields utility reads fields from file and, after re-calculating those fields, will
write them back to file. Because the files are then overridden, it is recommended that a
backup is made before setFields is executed. In the damBreak tutorial, the alpha.water

field is initially stored as a backup only, named alpha.water.orig. Before running
setFields, the user first needs to copy alpha.water.orig to alpha.water, e.g. by typing:

cp 0/alpha.water.orig 0/alpha.water

The user should then execute setFields as any other utility is executed. Using paraFoam,
check that the initial alpha.water field corresponds to the desired distribution as in Fig-
ure 4.2.

4.1.5 Fluid properties

Let us examine the transportProperties file in the constant directory. Its dictionary con-
tains the material properties for each fluid, separated into two subdictionaries phase1
and phase2. The transport model for each phase is selected by the transportModel

Open∇FOAM-v2006

T-80 Multiphase flow

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

Figure 4.2: Initial conditions for phase fraction alpha.water.

keyword. The user should select Newtonian in which case the kinematic viscosity is sin-
gle valued and specified under the keyword nu. The viscosity parameters for the other
models, e.g.CrossPowerLaw, are specified within subdictionaries with the generic name
<model>Coeffs, i.e.CrossPowerLawCoeffs in this example. The density is specified under
the keyword rho.

The surface tension between the two phases is specified under the keyword sigma.
The values used in this tutorial are listed in Table 4.1.

phase1 properties
Kinematic viscosity m2 s−1 nu 1.0× 10−6

Density kgm−3 rho 1.0× 103

phase2 properties
Kinematic viscosity m2 s−1 nu 1.48× 10−5

Density kgm−3 rho 1.0

Properties of both phases
Surface tension Nm−1 sigma 0.07

Table 4.1: Fluid properties for the damBreak tutorial

Gravitational acceleration is uniform across the domain and is specified in a file named
g in the constant directory. Unlike a normal field file, e.g. U and p, g is a uniformDimen-
sionedVectorField and so simply contains a set of dimensions and a value that represents
(0, 9.81, 0) m s−2 for this tutorial:

17

18 dimensions [0 1 -2 0 0 0 0];
19 value (0 -9.81 0);
20

21

22 // *** //

4.1.6 Turbulence modelling

As in the cavity example, the choice of turbulence modelling method is selectable at run-
time through the simulationType keyword in turbulenceProperties dictionary. In this

Open∇FOAM-v2006

4.1 Breaking of a dam T-81

example, we wish to run without turbulence modelling so we set laminar:

17

18 simulationType laminar;
19

20

21 // *** //

4.1.7 Time step control

Time step control is an important issue in free surface tracking since the surface-tracking
algorithm is considerably more sensitive to the Courant number Co than in standard fluid
flow calculations. Ideally, we should not exceed an upper limit Co ≈ 0.5 in the region
of the interface. In some cases, where the propagation velocity is easy to predict, the
user should specify a fixed time-step to satisfy the Co criterion. For more complex cases,
this is considerably more difficult. interFoam therefore offers automatic adjustment of the
time step as standard in the controlDict. The user should specify adjustTimeStep to be
yes and the maximum Co for the phase fields, maxAlphaCo, and other fields, maxCo, to
be 0.5. The upper limit on time step maxDeltaT can be set to a value that will not be
exceeded in this simulation, e.g. 1.0.

By using automatic time step control, the steps themselves are never rounded to a
convenient value. Consequently if we request that OpenFOAM saves results at a fixed
number of time step intervals, the times at which results are saved are somewhat arbitrary.
However even with automatic time step adjustment, OpenFOAM allows the user to specify
that results are written at fixed times; in this case OpenFOAM forces the automatic time
stepping procedure to adjust time steps so that it ‘hits’ on the exact times specified for
write output. The user selects this with the adjustableRunTime option for writeControl
in the controlDict dictionary. The controlDict dictionary entries should be:

17

18 application interFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 1;
27

28 deltaT 0.001;
29

30 writeControl adjustable;
31

32 writeInterval 0.05;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable yes;
47

48 adjustTimeStep yes;
49

50 maxCo 1;
51

52 maxAlphaCo 1;
53

54 maxDeltaT 1;
55

56 #sinclude "sampling"
57

58 // *** //

Open∇FOAM-v2006

T-82 Multiphase flow

4.1.8 Discretisation schemes

The interFoam solver uses the multidimensional universal limiter for explicit solution
(MULES) method, created by OpenCFD, to maintain boundedness of the phase fraction
independent of underlying numerical scheme, mesh structure, etc. The choice of schemes
for convection are therefore not restricted to those that are strongly stable or bounded,
e.g. upwind differencing.

The convection schemes settings are made in the divSchemes sub-dictionary of the
fvSchemes dictionary. In this example, the convection term in the momentum equa-
tion (∇ • (ρUU)), denoted by the div(rhoPhi,U) keyword, uses Gauss linearUpwind

grad(U) to produce good accuracy. The∇ • (Uα) term, represented by the div(phi,alpha)
keyword uses the vanLeer scheme. The∇ • (Urbα) term, represented by the div(phirb,alpha)
keyword, can similarly use the vanLeer scheme, but generally produces smoother inter-
faces using the linear scheme.

The other discretised terms use commonly employed schemes so that the fvSchemes
dictionary entries should therefore be:

17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 }
27

28 divSchemes
29 {
30 div(rhoPhi,U) Gauss linearUpwind grad(U);
31 div(phi,alpha) Gauss vanLeer;
32 div(phirb,alpha) Gauss linear;
33 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
34 }
35

36 laplacianSchemes
37 {
38 default Gauss linear corrected;
39 }
40

41 interpolationSchemes
42 {
43 default linear;
44 }
45

46 snGradSchemes
47 {
48 default corrected;
49 }
50

51

52 // *** //

4.1.9 Linear-solver control

In the fvSolution, the PISO sub-dictionary contains elements that are specific to interFoam.
There are the usual correctors to the momentum equation but also correctors to a PISO
loop around the α phase equation. Of particular interest are the nAlphaSubCycles and
cAlpha keywords. nAlphaSubCycles represents the number of sub-cycles within the α
equation; sub-cycles are additional solutions to an equation within a given time step. It
is used to enable the solution to be stable without reducing the time step and vastly
increasing the solution time. Here we specify 2 sub-cycles, which means that the α
equation is solved in 2× half length time steps within each actual time step.

The cAlpha keyword is a factor that controls the compression of the interface where: 0
corresponds to no compression; 1 corresponds to conservative compression; and, anything

Open∇FOAM-v2006

4.1 Breaking of a dam T-83

larger than 1, relates to enhanced compression of the interface. We generally recommend
a value of 1.0 which is employed in this example.

4.1.10 Running the code

Running of the code has been described in detail in previous tutorials. Try the following,
that uses tee, a command that enables output to be written to both standard output and
files:

cd $FOAM RUN/tutorials/multiphase/interFoam/laminar/damBreak/damBreak

interFoam | tee log

The code will now be run interactively, with a copy of output stored in the log file.

4.1.11 Post-processing

Post-processing of the results can now be done in the usual way. The user can monitor
the development of the phase fraction alpha.water in time, e.g. see Figure 4.3.

4.1.12 Running in parallel

The results from the previous example are generated using a fairly coarse mesh. We now
wish to increase the mesh resolution and re-run the case. The new case will typically
take a few hours to run with a single processor so, should the user have access to multiple
processors, we can demonstrate the parallel processing capability of OpenFOAM.

The user should first make a copy of the damBreak case, e.g. by

cd $FOAM RUN/tutorials/multiphase/interFoam/laminar/damBreak

mkdir damBreakFine

cp -r damBreak/0 damBreakFine

cp -r damBreak/system damBreakFine

cp -r damBreak/constant damBreakFine

Enter the new case directory and change the blocks description in the blockMeshDict
dictionary to

blocks

(

hex (0 1 5 4 12 13 17 16) (46 10 1) simpleGrading (1 1 1)

hex (2 3 7 6 14 15 19 18) (40 10 1) simpleGrading (1 1 1)

hex (4 5 9 8 16 17 21 20) (46 76 1) simpleGrading (1 2 1)

hex (5 6 10 9 17 18 22 21) (4 76 1) simpleGrading (1 2 1)

hex (6 7 11 10 18 19 23 22) (40 76 1) simpleGrading (1 2 1)

);

Here, the entry is presented as printed from the blockMeshDict file; in short the user must
change the mesh densities, e.g. the 46 10 1 entry, and some of the mesh grading entries
to 1 2 1. Once the dictionary is correct, generate the mesh.

As the mesh has now changed from the damBreak example, the user must re-initialise
the phase field alpha.water in the 0 time directory since it contains a number of elements
that is inconsistent with the new mesh. Note that there is no need to change the U and

Open∇FOAM-v2006

T-84 Multiphase flow

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

(a) At t = 0.25 s.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

(b) At t = 0.50 s.

Figure 4.3: Snapshots of liquid phase α.

Open∇FOAM-v2006

4.1 Breaking of a dam T-85

p rgh fields since they are specified as uniform which is independent of the number of
elements in the field. We wish to initialise the field with a sharp interface, i.e. it elements
would have α = 1 or α = 0. Updating the field with mapFields may produce interpolated
values 0 < α < 1 at the interface, so it is better to rerun the setFields utility. There is a
backup copy of the initial uniform α field named 0/alpha.water.org that the user should
copy to 0/alpha.water before running setFields:

cd $FOAM RUN/tutorials/multiphase/interFoam/laminar/damBreak/damBreakFine

cp -r 0/alpha.water.org 0/alpha.water

setFields

The method of parallel computing used by OpenFOAM is known as domain de-
composition, in which the geometry and associated fields are broken into pieces and
allocated to separate processors for solution. The first step required to run a parallel
case is therefore to decompose the domain using the decomposePar utility. There is a
dictionary associated with decomposePar named decomposeParDict which is located in
the system directory of the tutorial case; also, like with many utilities, a default dic-
tionary can be found in the directory of the source code of the specific utility, i.e. in
$FOAM UTILITIES/parallelProcessing/decomposePar for this case.

The first entry is numberOfSubdomains which specifies the number of subdomains into
which the case will be decomposed, usually corresponding to the number of processors
available for the case.

In this tutorial, the method of decomposition should be simple and the corresponding
simpleCoeffs should be edited according to the following criteria. The domain is split
into pieces, or subdomains, in the x, y and z directions, the number of subdomains in
each direction being given by the vector n. As this geometry is 2 dimensional, the 3rd
direction, z, cannot be split, hence nz must equal 1. The nx and ny components of n
split the domain in the x and y directions and must be specified so that the number
of subdomains specified by nx and ny equals the specified numberOfSubdomains, i.e.

nxny = numberOfSubdomains. It is beneficial to keep the number of cell faces adjoining
the subdomains to a minimum so, for a square geometry, it is best to keep the split
between the x and y directions should be fairly even. The delta keyword should be set
to 0.001.

For example, let us assume we wish to run on 4 processors. We would set number-
OfSubdomains to 4 and n = (2, 2, 1). When running decomposePar, we can see from the
screen messages that the decomposition is distributed fairly even between the processors.

The user should consult User Guide section 3.2 for details of how to run a case in
parallel; in this tutorial we merely present an example of running in parallel. We use
the openMPI implementation of the standard message-passing interface (MPI). As a test
here, the user can run in parallel on a single node, the local host only, by typing:

mpirun -np 4 interFoam -parallel > log &

The user may run on more nodes over a network by creating a file that lists the
host names of the machines on which the case is to be run as described in User Guide
section 3.2.2. The case should run in the background and the user can follow its progress
by monitoring the log file as usual.

4.1.13 Post-processing a case run in parallel

Once the case has completed running, the decomposed fields and mesh must be reassem-
bled for post-processing using the reconstructPar utility. Simply execute it from the com-

Open∇FOAM-v2006

T-86 Multiphase flow

Figure 4.4: Mesh of processor 2 in parallel processed case.

mand line. The results from the fine mesh are shown in Figure 4.5. The user can see that
the resolution of interface has improved significantly compared to the coarse mesh.

The user may also post-process a segment of the decomposed domain individually by
simply treating the individual processor directory as a case in its own right. For example
if the user starts paraFoam by

paraFoam -case processor1

then processor1 will appear as a case module in ParaView. Figure 4.4 shows the mesh
from processor 1 following the decomposition of the domain using the simple method.

Open∇FOAM-v2006

4.1 Breaking of a dam T-87

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

(a) At t = 0.25 s.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

(b) At t = 0.50 s.

Figure 4.5: Snapshots of liquid phase α with refined mesh.

Open∇FOAM-v2006

T-88 Multiphase flow

Open∇FOAM-v2006

Chapter 5

Stress analysis

T-90 Stress analysis

5.1 Stress analysis of a plate with a hole

Tutorial path:

• $FOAM TUTORIALS/stressAnalysis/solidDisplacementFoam/plateHole

This tutorial describes how to pre-process, run and post-process a case involving linear-
elastic, steady-state stress analysis on a square plate with a circular hole at its centre.

• thermal stress analysis using solidDisplacementFoam solver

• validation against the analytical solution

The plate dimensions are: side length 4 m and radius R = 0.5 m. It is loaded with a
uniform traction of σ = 10 kPa over its left and right faces as shown in Figure 5.1. Two
symmetry planes can be identified for this geometry and therefore the solution domain
need only cover a quarter of the geometry, shown by the shaded area in Figure 5.1.

xsymmetry plane

4.0 m

y
σ = 10 kPaσ = 10 kPa

R = 0.5 m

sy
m
m
et
ry

p
la
n
e

Figure 5.1: Geometry of the plate with a hole.

5.1.1 Problem specification

The problem can be approximated as 2-dimensional since the load is applied in the plane
of the plate. In a Cartesian coordinate system there are two possible assumptions to take
in regard to the behaviour of the structure in the third dimension: (1) the plane stress
condition, in which the stress components acting out of the 2D plane are assumed to be
negligible; (2) the plane strain condition, in which the strain components out of the 2D
plane are assumed negligible. The plane stress condition is appropriate for solids whose
third dimension is thin as in this case; the plane strain condition is applicable for solids
where the third dimension is thick.

Open∇FOAM-v2006

https://develop.openfoam.com/Development/OpenFOAM-plus/tree/master/tutorials/stressAnalysis/solidDisplacementFoam/plateHole

5.1 Stress analysis of a plate with a hole T-91

An analytical solution exists for loading of an infinitely large, thin plate with a circular
hole. The solution for the stress normal to the vertical plane of symmetry is

(σxx)x=0
=

σ

(

1 +
R2

2y2
+

3R4

2y4

)

for |y| ≥ R

0 for |y| < R
(5.1)

Results from the simulation will be compared with this solution. At the end of the
tutorial, the user can: investigate the sensitivity of the solution to mesh resolution and
mesh grading; and, increase the size of the plate in comparison to the hole to try to
estimate the error in comparing the analytical solution for an infinite plate to the solution
of this problem of a finite plate.

5.1.2 Mesh generation

The domain consists of four blocks, some of which have arc-shaped edges. The block
structure for the part of the mesh in the x− y plane is shown in Figure 5.2. As already
mentioned in section 2.1.1.1, all geometries are generated in 3 dimensions in OpenFOAM
even if the case is to be as a 2 dimensional problem. Therefore a dimension of the block
in the z direction has to be chosen; here, 0.5 m is selected. It does not affect the solution
since the traction boundary condition is specified as a stress rather than a force, thereby
making the solution independent of the cross-sectional area.

x

y x2

x1 x1

x2

x2

x1

x1

x2

x2

x1

left

left

up 7 up

right

3

down

hole

0

down

right

6

9

8

4

10

10 2

5
2

1

4 3

Figure 5.2: Block structure of the mesh for the plate with a hole.

The user should change into the plateHole case in the $FOAM RUN/tutorials/stress-
Analysis/solidDisplacementFoam directory and open the system/blockMeshDict file in an
editor, as listed below

Open∇FOAM-v2006

T-92 Stress analysis

17 scale 1;
18

19 vertices
20 (
21 (0.5 0 0)
22 (1 0 0)
23 (2 0 0)
24 (2 0.707107 0)
25 (0.707107 0.707107 0)
26 (0.353553 0.353553 0)
27 (2 2 0)
28 (0.707107 2 0)
29 (0 2 0)
30 (0 1 0)
31 (0 0.5 0)
32 (0.5 0 0.5)
33 (1 0 0.5)
34 (2 0 0.5)
35 (2 0.707107 0.5)
36 (0.707107 0.707107 0.5)
37 (0.353553 0.353553 0.5)
38 (2 2 0.5)
39 (0.707107 2 0.5)
40 (0 2 0.5)
41 (0 1 0.5)
42 (0 0.5 0.5)
43);
44

45 blocks
46 (
47 hex (5 4 9 10 16 15 20 21) (10 10 1) simpleGrading (1 1 1)
48 hex (0 1 4 5 11 12 15 16) (10 10 1) simpleGrading (1 1 1)
49 hex (1 2 3 4 12 13 14 15) (20 10 1) simpleGrading (1 1 1)
50 hex (4 3 6 7 15 14 17 18) (20 20 1) simpleGrading (1 1 1)
51 hex (9 4 7 8 20 15 18 19) (10 20 1) simpleGrading (1 1 1)
52);
53

54 edges
55 (
56 arc 0 5 (0.469846 0.17101 0)
57 arc 5 10 (0.17101 0.469846 0)
58 arc 1 4 (0.939693 0.34202 0)
59 arc 4 9 (0.34202 0.939693 0)
60 arc 11 16 (0.469846 0.17101 0.5)
61 arc 16 21 (0.17101 0.469846 0.5)
62 arc 12 15 (0.939693 0.34202 0.5)
63 arc 15 20 (0.34202 0.939693 0.5)
64);
65

66 boundary
67 (
68 left
69 {
70 type symmetryPlane;
71 faces
72 (
73 (8 9 20 19)
74 (9 10 21 20)
75);
76 }
77 right
78 {
79 type patch;
80 faces
81 (
82 (2 3 14 13)
83 (3 6 17 14)
84);
85 }
86 down
87 {
88 type symmetryPlane;
89 faces
90 (
91 (0 1 12 11)
92 (1 2 13 12)
93);
94 }
95 up
96 {
97 type patch;
98 faces
99 (

100 (7 8 19 18)
101 (6 7 18 17)

Open∇FOAM-v2006

5.1 Stress analysis of a plate with a hole T-93

102);
103 }
104 hole
105 {
106 type patch;
107 faces
108 (
109 (10 5 16 21)
110 (5 0 11 16)
111);
112 }
113 frontAndBack
114 {
115 type empty;
116 faces
117 (
118 (10 9 4 5)
119 (5 4 1 0)
120 (1 4 3 2)
121 (4 7 6 3)
122 (4 9 8 7)
123 (21 16 15 20)
124 (16 11 12 15)
125 (12 13 14 15)
126 (15 14 17 18)
127 (15 18 19 20)
128);
129 }
130);
131

132 mergePatchPairs
133 (
134);
135

136 // *** //

Until now, we have only specified straight edges in the geometries of previous tutorials
but here we need to specify curved edges. These are specified under the edges keyword
entry which is a list of non-straight edges. The syntax of each list entry begins with the
type of curve, including arc, simpleSpline, polyLine etc., described further in User
Guide section 4.3.1. In this example, all the edges are circular and so can be specified by
the arc keyword entry. The following entries are the labels of the start and end vertices
of the arc and a point vector through which the circular arc passes.

The blocks in this blockMeshDict do not all have the same orientation. As can be
seen in Figure 5.2 the x2 direction of block 0 is equivalent to the −x1 direction for block
4. This means care must be taken when defining the number and distribution of cells in
each block so that the cells match up at the block faces.

6 patches are defined: one for each side of the plate, one for the hole and one for the
front and back planes. The left and down patches are both a symmetry plane. Since this
is a geometric constraint, it is included in the definition of the mesh, rather than being
purely a specification on the boundary condition of the fields. Therefore they are defined
as such using a special symmetryPlane type as shown in the blockMeshDict.

The frontAndBack patch represents the plane which is ignored in a 2D case. Again
this is a geometric constraint so is defined within the mesh, using the empty type as shown
in the blockMeshDict. For further details of boundary types and geometric constraints,
the user should refer to User Guide section 4.2.1.

The remaining patches are of the regular patch type. The mesh should be generated
using blockMesh and can be viewed in paraFoam as described in section 2.1.2. It should
appear as in Figure 5.3.

5.1.2.1 Boundary and initial conditions

Once the mesh generation is complete, the initial field with boundary conditions must be
set. For a stress analysis case without thermal stresses, only displacement D needs to be
set. The 0/D is as follows:

Open∇FOAM-v2006

T-94 Stress analysis

Figure 5.3: Mesh of the hole in a plate problem.

17 dimensions [0 1 0 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 left
24 {
25 type symmetryPlane;
26 }
27 right
28 {
29 type tractionDisplacement;
30 traction uniform (10000 0 0);
31 pressure uniform 0;
32 value uniform (0 0 0);
33 }
34 down
35 {
36 type symmetryPlane;
37 }
38 up
39 {
40 type tractionDisplacement;
41 traction uniform (0 0 0);
42 pressure uniform 0;
43 value uniform (0 0 0);
44 }
45 hole
46 {
47 type tractionDisplacement;
48 traction uniform (0 0 0);
49 pressure uniform 0;
50 value uniform (0 0 0);
51 }
52 frontAndBack
53 {
54 type empty;
55 }
56 }
57

58 // *** //

Firstly, it can be seen that the displacement initial conditions are set to (0, 0, 0) m. The
left and down patches must be both of symmetryPlane type since they are specified
as such in the mesh description in the constant/polyMesh/boundary file. Similarly the
frontAndBack patch is declared empty.

The other patches are traction boundary conditions, set by a specialist traction bound-
ary type. The traction boundary conditions are specified by a linear combination of: (1)
a boundary traction vector under keyword traction; (2) a pressure that produces a trac-

Open∇FOAM-v2006

5.1 Stress analysis of a plate with a hole T-95

tion normal to the boundary surface that is defined as negative when pointing out of
the surface, under keyword pressure. The up and hole patches are zero traction so the
boundary traction and pressure are set to zero. For the right patch the traction should
be (1e4, 0, 0) Pa and the pressure should be 0 Pa.

5.1.2.2 Mechanical properties

The physical properties for the case are set in the mechanicalProperties dictionary in the
constant directory. For this problem, we need to specify the mechanical properties of
steel given in Table 5.1. In the mechanical properties dictionary, the user must also set
planeStress to yes.

Property Units Keyword Value
Density kgm−3 rho 7854
Young’s modulus Pa E 2× 1011

Poisson’s ratio — nu 0.3

Table 5.1: Mechanical properties for steel

5.1.2.3 Thermal properties

The temperature field variable T is present in the solidDisplacementFoam solver since the
user may opt to solve a thermal equation that is coupled with the momentum equation
through the thermal stresses that are generated. The user specifies at run time whether
OpenFOAM should solve the thermal equation by the thermalStress switch in the ther-
malProperties dictionary. This dictionary also sets the thermal properties for the case,
e.g. for steel as listed in Table 5.2.

Property Units Keyword Value

Specific heat capacity Jkg−1K−1 C 434
Thermal conductivity Wm−1K−1 k 60.5
Thermal expansion coeff. K−1 alpha 1.1× 10−5

Table 5.2: Thermal properties for steel

In this case we do not want to solve for the thermal equation. Therefore we must set
the thermalStress keyword entry to no in the thermalProperties dictionary.

5.1.2.4 Control

As before, the information relating to the control of the solution procedure are read in
from the controlDict dictionary. For this case, the startTime is 0 s. The time step is
not important since this is a steady state case; in this situation it is best to set the time
step deltaT to 1 so it simply acts as an iteration counter for the steady-state case. The
endTime, set to 100, then acts as a limit on the number of iterations. The writeInterval
can be set to 20.

The controlDict entries are as follows:

17

18 application solidDisplacementFoam;
19

20 startFrom startTime;
21

Open∇FOAM-v2006

T-96 Stress analysis

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 100;
27

28 deltaT 1;
29

30 writeControl timeStep;
31

32 writeInterval 20;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 graphFormat raw;
47

48 runTimeModifiable true;
49

50

51 // *** //

5.1.2.5 Discretisation schemes and linear-solver control

Let us turn our attention to the fvSchemes dictionary. Firstly, the problem we are
analysing is steady-state so the user should select SteadyState for the time derivatives
in timeScheme. This essentially switches off the time derivative terms. Not all solvers,
especially in fluid dynamics, work for both steady-state and transient problems but solid-
DisplacementFoam does work, since the base algorithm is the same for both types of
simulation.

The momentum equation in linear-elastic stress analysis includes several explicit terms
containing the gradient of displacement. The calculations benefit from accurate and
smooth evaluation of the gradient. Normally, in the finite volume method the discreti-
sation is based on Gauss’s theorem The Gauss method is sufficiently accurate for most
purposes but, in this case, the least squares method will be used. The user should there-
fore open the fvSchemes dictionary in the system directory and ensure the leastSquares
method is selected for the grad(U) gradient discretisation scheme in the gradSchemes

sub-dictionary:

17

18 d2dt2Schemes
19 {
20 default steadyState;
21 }
22

23 ddtSchemes
24 {
25 default Euler;
26 }
27

28 gradSchemes
29 {
30 default leastSquares;
31 grad(D) leastSquares;
32 grad(T) leastSquares;
33 }
34

35 divSchemes
36 {
37 default none;
38 div(sigmaD) Gauss linear;
39 }
40

41 laplacianSchemes
42 {

Open∇FOAM-v2006

5.1 Stress analysis of a plate with a hole T-97

43 default none;
44 laplacian(DD,D) Gauss linear corrected;
45 laplacian(DT,T) Gauss linear corrected;
46 }
47

48 interpolationSchemes
49 {
50 default linear;
51 }
52

53 snGradSchemes
54 {
55 default none;
56 }
57

58 // *** //

The fvSolution dictionary in the system directory controls the linear equation solvers and
algorithms used in the solution. The user should first look at the solvers sub-dictionary
and notice that the choice of solver for D is GAMG. The solver tolerance should be set to
10−6 for this problem. The solver relative tolerance, denoted by relTol, sets the required
reduction in the residuals within each iteration. It is uneconomical to set a tight (low)
relative tolerance within each iteration since a lot of terms in each equation are explicit
and are updated as part of the segregated iterative procedure. Therefore a reasonable
value for the relative tolerance is 0.01, or possibly even higher, say 0.1, or in some cases
even 0.9 (as in this case).

17

18 solvers
19 {
20 "(D|T)"
21 {
22 solver GAMG;
23 tolerance 1e-06;
24 relTol 0.9;
25 smoother GaussSeidel;
26 nCellsInCoarsestLevel 20;
27 }
28 }
29

30 stressAnalysis
31 {
32 compactNormalStress yes;
33 nCorrectors 1;
34 D 1e-06;
35 }
36

37

38 // *** //

The fvSolution dictionary contains a sub-dictionary, stressAnalysis that contains some con-
trol parameters specific to the application solver. Firstly there is nCorrectors which
specifies the number of outer loops around the complete system of equations, including
traction boundary conditions within each time step. Since this problem is steady-state,
we are performing a set of iterations towards a converged solution with the ’time step’
acting as an iteration counter. We can therefore set nCorrectors to 1.

The D keyword specifies a convergence tolerance for the outer iteration loop, i.e. sets
a level of initial residual below which solving will cease. It should be set to the desired
solver tolerance specified earlier, 10−6 for this problem.

5.1.3 Running the code

The user should run the code here in the background from the command line as specified
below, so he/she can look at convergence information in the log file afterwards.

cd $FOAM RUN/tutorials/stressAnalysis/solidDisplacementFoam/plateHole

solidDisplacementFoam > log &

Open∇FOAM-v2006

T-98 Stress analysis

The user should check the convergence information by viewing the generated log file which
shows the number of iterations and the initial and final residuals of the displacement in
each direction being solved. The final residual should always be less than 0.9 times the
initial residual as this iteration tolerance set. Once both initial residuals have dropped
below the convergence tolerance of 10−6 the run has converged and can be stopped by
killing the batch job.

5.1.4 Post-processing

Post processing can be performed as in section 2.1.4. The solidDisplacementFoam solver
outputs the stress field σ as a symmetric tensor field sigma. This is consistent with the
way variables are usually represented in OpenFOAM solvers by the mathematical symbol
by which they are represented; in the case of Greek symbols, the variable is named
phonetically.

For post-processing individual scalar field components, σxx, σxy etc., can be generated
by running the postProcess utility as before in section 2.1.5.7, this time on sigma:

postProcess -func 'components(sigma)'

Components named sigmaxx, sigmaxy etc. are written to time directories of the case.
The σxx stresses can be viewed in paraFoam as shown in Figure 5.4.

0

5

10

15

20

25

30

σ
x
x
(k
P
a)

Figure 5.4: σxx stress field in the plate with hole.

We would like to compare the analytical solution of Equation 5.1 to our solution. We
therefore must output a set of data of σxx along the left edge symmetry plane of our
domain. The user may generate the required graph data using the postProcess utility,
using a sets function object. The utility can be driven from a user-supplied file located in
the system directory, whose entries are summarised in User Guide Table 7.3. The sample
line specified in sets is set between (0.0, 0.5, 0.25) and (0.0, 2.0, 0.25), and the fields are
specified in the fields list:

8

9 singleGraph
10 {
11 start (0 0.5 0.25);
12 end (0 2 0.25);
13 fields (sigmaxx);
14

15 #includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg"

Open∇FOAM-v2006

5.1 Stress analysis of a plate with a hole T-99

0

5

10

15

20

25

30

35

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

S
tr
es
s
(σ

x
x
) x

=
0
(k
P
a)

Distance, y (m)

Numerical prediction Analytical solution

Figure 5.5: Normal stress along the vertical symmetry (σxx)x=0

16

17 setConfig
18 {
19 axis y;
20 }
21

22 // Must be last entry
23 #includeEtc "caseDicts/postProcessing/graphs/graph.cfg"
24 }
25

26 // *** //

The writeFormat is raw 2 column format. The data is written into files within time
subdirectories of a sets directory, e.g. the data at t = 100 s is found within the file
sets/100/leftPatch sigmaxx.xy. In an application such as GnuPlot, one could type the
following at the command prompt would be sufficient to plot both the numerical data
and analytical solution:

plot [0.5:2] [0:] 'sets/100/leftPatch sigmaxx.xy',

1e4*(1+(0.125/(x**2))+(0.09375/(x**4)))

An example plot is shown in Figure 5.5.

5.1.5 Exercises

The user may wish to experiment with solidDisplacementFoam by trying the following
exercises:

5.1.5.1 Increasing mesh resolution

Increase the mesh resolution in each of the x and y directions. Use mapFields to map the
final coarse mesh results from section 5.1.4 to the initial conditions for the fine mesh.

5.1.5.2 Introducing mesh grading

Grade the mesh so that the cells near the hole are finer than those away from the hole.
Design the mesh so that the ratio of sizes between adjacent cells is no more than 1.1

Open∇FOAM-v2006

T-100 Stress analysis

and so that the ratio of cell sizes between blocks is similar to the ratios within blocks.
Mesh grading is described in section 2.1.6. Again use mapFields to map the final coarse
mesh results from section 5.1.4 to the initial conditions for the graded mesh. Compare
the results with those from the analytical solution and previous calculations. Can this
solution be improved upon using the same number of cells with a different solution?

5.1.5.3 Changing the plate size

The analytical solution is for an infinitely large plate with a finite sized hole in it. There-
fore this solution is not completely accurate for a finite sized plate. To estimate the error,
increase the plate size while maintaining the hole size at the same value.

Open∇FOAM-v2006

Index T-101

Index

Symbols Numbers A B C D E F G H I J K L M N O P Q R S T U V W X Z

A
adjustableRunTime

keyword entry, T-81
adjustTimeStep keyword, T-81
alphaContactAngle

boundary condition, T-78
analytical solution, T-45
Annotation window panel, T-23
axes

right-handed rectangular Cartesian, T-16

B
background

process, T-23
blockMesh solver, T-46
blockMesh utility, T-34
blockMeshDict

dictionary, T-16, T-18, T-33, T-93
blocks keyword, T-18, T-28
boundary condition

alphaContactAngle, T-78
empty, T-16, T-53, T-69
inlet, T-53
outlet, T-53
pressureOutlet, T-69
setup, T-18
symmetryPlane, T-69
wall, T-37, T-53, T-69, T-78

boundaryField keyword, T-19
boxToCell keyword, T-79
breaking of a dam, T-76
button

Camera Parallel Projection, T-22
Enable Line Series, T-32
Orientation Axes, T-23
Refresh Times, T-23
Rescale to Data Range, T-23
Toggle Advanced Properties, T-22

C
cAlpha keyword, T-82
Camera Parallel Projection button, T-22
cavity flow, T-16

Color Legend window, T-25
controlDict

dictionary, T-20, T-29, T-38, T-71, T-81,
T-95

controlDict file, T-49
convergence, T-36
coordinate system, T-16
Courant number, T-20
CrossPowerLaw

keyword entry, T-80
Current Time Controls menu, T-23
cylinder

flow around a, T-45

D
dam

breaking of a, T-76
decompression of a tank, T-68
defaultFieldValues keyword, T-79
dictionary

PISO, T-21
blockMeshDict, T-16, T-18, T-33, T-93
controlDict, T-20, T-29, T-38, T-71, T-81,

T-95
fvSchemes, T-82
mechanicalProperties, T-95
thermalProperties, T-95
transportProperties, T-19, T-35, T-38
turbulenceProperties, T-38, T-80

dimensions keyword, T-19
directory

system, T-49
tutorials, T-13

E
empty

boundary condition, T-16, T-53, T-69
Enable Line Series button, T-32
endTime keyword, T-20

F
field

U, T-21

Open∇FOAM-v2006

T-102 Index

p, T-21
fieldValues keyword, T-79
file

controlDict, T-49
g, T-80
transportProperties, T-79

flow
free surface, T-76
laminar, T-16
steady, turbulent, T-58
supersonic, T-64
turbulent, T-16

flow around a cylinder, T-45
flow over backward step, T-58
foreground

process, T-23
fvSchemes

dictionary, T-82

G
g file, T-80
GAMG

keyword entry, T-97
gradient

Gauss’s theorem, T-96
least square fit, T-96
least squares method, T-96

I
icoFoam solver, T-16, T-19, T-20, T-23
incompressibleTransportModels

library, T-59
incompressibleTurbulenceModels

library, T-59
inlet

boundary condition, T-53
internalField keyword, T-19

K
keyword

adjustTimeStep, T-81
blocks, T-18, T-28
boundaryField, T-19
boxToCell, T-79
cAlpha, T-82
defaultFieldValues, T-79
dimensions, T-19
endTime, T-20
fieldValues, T-79
internalField, T-19
latestTime, T-35
leastSquares, T-96
maxAlphaCo, T-81
maxCo, T-81
maxDeltaT, T-81

nAlphaSubCycles, T-82

pRefCell, T-21

pRefValue, T-21

pressure, T-95

printCoeffs, T-38

regions, T-79

relTol, T-97

simulationType, T-38, T-80

solver, T-97

startFrom, T-20

startTime, T-20

tolerance, T-97

topoSetSource, T-79

traction, T-94

value, T-19

vertices, T-18

writeControl, T-20, T-81

writeFormat, T-99

writeInterval, T-20, T-29

keyword entry

CrossPowerLaw, T-80

GAMG, T-97

LES, T-38

Newtonian, T-80

RAS, T-38

adjustableRunTime, T-81

laminar, T-38

runTime, T-29

startTime, T-20

timeStep, T-20, T-29

L
laminar

keyword entry, T-38

latestTime keyword, T-35

leastSquares keyword, T-96

LES

keyword entry, T-38

library

incompressibleTransportModels, T-59

incompressibleTurbulenceModels, T-59

lid-driven cavity flow, T-16

Line Style menu, T-32

liquid

electrically-conducting, T-52

M
magnetohydrodynamics, T-52

mapFields utility, T-29, T-35, T-39, T-99

Marker Style menu, T-32

maxAlphaCo keyword, T-81

maxCo keyword, T-81

maxDeltaT keyword, T-81

mechanicalProperties

Open∇FOAM-v2006

Index T-103

dictionary, T-95
menu

Current Time Controls, T-23
Line Style, T-32
Marker Style, T-32
VCR Controls, T-23

menu entry
Plot Over Line, T-32
Settings..., T-22
Show Color Legend, T-25

mesh
grading, example of, T-58
non-orthogonal, T-45
refinement, T-68
resolution, T-28

Mesh Parts window panel, T-22
mhdFoam solver, T-53

N
nAlphaSubCycles keyword, T-82
Newtonian

keyword entry, T-80
non-orthogonal mesh, T-45

O
Orientation Axes button, T-23
outlet

boundary condition, T-53

P
p field, T-21
paraFoam, T-21
Pipeline Browser window, T-22
PISO

dictionary, T-21
pisoFoam solver, T-16
Plot Over Line

menu entry, T-32
potentialFoam solver, T-46
pRefCell keyword, T-21
pRefValue keyword, T-21
pressure keyword, T-95
pressure waves

in liquids, T-68
pressureOutlet

boundary condition, T-69
printCoeffs keyword, T-38
process

background, T-23
foreground, T-23

Properties window panel, T-22, T-23

R
RAS

keyword entry, T-38

Refresh Times button, T-23

regions keyword, T-79

relTol keyword, T-97

Rescale to Data Range button, T-23

restart, T-35

Reynolds number, T-16, T-19

runTime

keyword entry, T-29

S
setFields utility, T-79

Settings...

menu entry, T-22

Show Color Legend

menu entry, T-25

simpleFoam solver, T-59

simulationType keyword, T-38, T-80

solidDisplacementFoam solver, T-95

solver

blockMesh, T-46

icoFoam, T-16, T-19, T-20, T-23

mhdFoam, T-53

pisoFoam, T-16

potentialFoam, T-46

simpleFoam, T-59

solidDisplacementFoam, T-95

sonicFoam, T-65

sonicLiquidFoam, T-69

solver keyword, T-97

sonicFoam solver, T-65

sonicLiquidFoam solver, T-69

startFrom keyword, T-20

startTime

keyword entry, T-20

startTime keyword, T-20

steady flow

turbulent, T-58

stress analysis of plate with hole, T-90

supersonic flow, T-64

supersonic flow over forward step, T-64

symmetryPlane

boundary condition, T-69

system directory, T-49

T
thermalProperties

dictionary, T-95

time step, T-20

timeStep

keyword entry, T-20, T-29

Toggle Advanced Properties button, T-22

tolerance keyword, T-97

topoSetSource keyword, T-79

traction keyword, T-94

Open∇FOAM-v2006

T-104 Index

transportProperties

dictionary, T-19, T-35, T-38
transportProperties file, T-79
turbulence

dissipation, T-37
kinetic energy, T-37
length scale, T-37

turbulence model
RAS, T-36

turbulenceProperties

dictionary, T-38, T-80
turbulent flow

steady, T-58
tutorials

breaking of a dam, T-76
decompression of a tank, T-68
flow around a cylinder, T-45
flow over backward step, T-58
Hartmann problem, T-52
introduction, T-13
lid-driven cavity flow, T-16
stress analysis of plate with hole, T-90
supersonic flow over forward step, T-64

tutorials directory, T-13

U
U field, T-21
Ucomponents utility, T-54

upwind differencing, T-82
utility

Ucomponents, T-54
blockMesh, T-34
mapFields, T-29, T-35, T-39, T-99

setFields, T-79

V
value keyword, T-19
VCR Controls menu, T-23
vertices keyword, T-18

viscosity
kinematic, T-20, T-38

W
wall

boundary condition, T-37, T-53, T-69,
T-78

window
Color Legend, T-25

Pipeline Browser, T-22
window panel

Annotation, T-23
Mesh Parts, T-22

Properties, T-22, T-23
writeControl keyword, T-20, T-81
writeFormat keyword, T-99
writeInterval keyword, T-20, T-29

Open∇FOAM-v2006

	Copyright Notice
	Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported Licence
	1. Definitions
	2. Fair Dealing Rights
	3. License Grant
	4. Restrictions
	5. Representations, Warranties and Disclaimer
	6. Limitation on Liability
	7. Termination
	8. Miscellaneous

	Trademarks
	Contents
	1 Introduction
	1.1 Getting started
	1.1.1 Note for Windows Users

	2 Incompressible flow
	2.1 Lid-driven cavity flow
	2.1.1 Pre-processing
	2.1.1.1 Mesh generation
	2.1.1.2 Boundary and initial conditions
	2.1.1.3 Physical properties
	2.1.1.4 Control
	2.1.1.5 Discretisation and linear-solver settings

	2.1.2 Viewing the mesh
	2.1.3 Running an application
	2.1.4 Post-processing
	2.1.4.1 Isosurface and contour plots
	2.1.4.2 Vector plots
	2.1.4.3 Streamline plots

	2.1.5 Increasing the mesh resolution
	2.1.5.1 Creating a new case using an existing case
	2.1.5.2 Creating the finer mesh
	2.1.5.3 Mapping the coarse mesh results onto the fine mesh
	2.1.5.4 Control adjustments
	2.1.5.5 Running the code as a background process
	2.1.5.6 Vector plot with the refined mesh
	2.1.5.7 Plotting graphs

	2.1.6 Introducing mesh grading
	2.1.6.1 Creating the graded mesh
	2.1.6.2 Changing time and time step
	2.1.6.3 Mapping fields

	2.1.7 Increasing the Reynolds number
	2.1.7.1 Pre-processing
	2.1.7.2 Running the code

	2.1.8 High Reynolds number flow
	2.1.8.1 Pre-processing
	2.1.8.2 Running the code

	2.1.9 Changing the case geometry
	2.1.10 Post-processing the modified geometry

	2.2 Flow around a cylinder
	2.2.1 Problem specification
	2.2.2 Note on potentialFoam
	2.2.3 Mesh generation
	2.2.4 Boundary conditions and initial fields
	2.2.5 Running the case

	2.3 Magnetohydrodynamic flow of a liquid
	2.3.1 Problem specification
	2.3.2 Mesh generation
	2.3.3 Running the case

	3 Compressible flow
	3.1 Steady turbulent flow over a backward-facing step
	3.1.1 Problem specification
	3.1.2 Mesh generation
	3.1.3 Boundary conditions and initial fields
	3.1.4 Case control
	3.1.5 Running the case and post-processing

	3.2 Supersonic flow over a forward-facing step
	3.2.1 Problem specification
	3.2.2 Mesh generation
	3.2.3 Running the case
	3.2.4 Exercise

	3.3 Decompression of a tank internally pressurised with water
	3.3.1 Problem specification
	3.3.2 Mesh Generation
	3.3.3 Preparing the Run
	3.3.4 Running the case
	3.3.5 Improving the solution by refining the mesh

	4 Multiphase flow
	4.1 Breaking of a dam
	4.1.1 Problem specification
	4.1.2 Mesh generation
	4.1.3 Boundary conditions
	4.1.4 Setting initial field
	4.1.5 Fluid properties
	4.1.6 Turbulence modelling
	4.1.7 Time step control
	4.1.8 Discretisation schemes
	4.1.9 Linear-solver control
	4.1.10 Running the code
	4.1.11 Post-processing
	4.1.12 Running in parallel
	4.1.13 Post-processing a case run in parallel

	5 Stress analysis
	5.1 Stress analysis of a plate with a hole
	5.1.1 Problem specification
	5.1.2 Mesh generation
	5.1.2.1 Boundary and initial conditions
	5.1.2.2 Mechanical properties
	5.1.2.3 Thermal properties
	5.1.2.4 Control
	5.1.2.5 Discretisation schemes and linear-solver control

	5.1.3 Running the code
	5.1.4 Post-processing
	5.1.5 Exercises
	5.1.5.1 Increasing mesh resolution
	5.1.5.2 Introducing mesh grading
	5.1.5.3 Changing the plate size

	Index

