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With the widespread adoption of the Open Radio Access Network (O-RAN) framework, 

securing its components against potential security breaches has become paramount. This paper 

delves into the analysis of security vulnerabilities within O-RAN components, analyzing 

potential risks that might compromise the secrecy, authenticity, and accessibility of vital 

assets. Utilizing a comprehensive array of security testing tools and methodologies, we 

perform detailed assessments including vulnerability scanning, penetration testing, and code 

analysis. By rigorously testing O-RAN components, we aim to pinpoint potential leakage 

points and security flaws. We then suggest effective remediation strategies and mitigation 

techniques to address these identified vulnerabilities. By employing sophisticated security 

assessment tools, we aim to enhance O-RAN security practices, ensuring the resilience and 
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reliability of O-RAN components against new threats. This research offers valuable insights 

into the identification, analysis, and resolution of security vulnerabilities within O-RAN, 

contributing towards fortifying and enhancing the resilience of the O-RAN ecosystem. 
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Chapter 1 Introduction 

The rapid evolution of the telecommunications industry and the growing demand for 

seamless connectivity have been driven by the rise of groundbreaking technologies like 5G 

networks [1]. As the future of cellular telecommunication advances, 5G is set to transform 

how we connect and engage with the digital world. Central to this transformation is the Open 

Radio Access Network (O-RAN) [2], which represents a significant shift in network 

architecture. O-RAN's open and interoperable design allows for greater flexibility and 

innovation in 5G deployments, offering benefits such as enhanced network security, reduced 

costs, and the ability to accommodate a broader range of suppliers. This paradigm shift is 

expected to drive advancements across various sectors, from telecommunications to IoT 

applications, solidifying O-RAN's role as a cornerstone of future 5G infrastructure. By 

leveraging software-defined principles, virtualization, and disaggregation, O-RAN empowers 

operators to realize the full potential of 5G by offering greater flexibility, scalability, and cost-

efficiency compared to traditional proprietary systems. This architectural transformation 

enables operators to optimize network deployments, enhance service delivery, and 

accommodate a variety of use cases that require rapid and responsive connectivity. 

O-RAN utilizes the principles of Software Defined Networking (SDN) and Network 

Function Virtualization (NFV) to enhance flexibility, scalability, and cost-effectiveness within 

the radio access network sector. This is accomplished by separating hardware from software, 

O-RAN disaggregates the traditional monolithic base station into smaller, interoperable 

functional modules, while SDN provides a centralized, software-defined control plane for 

dynamic management and orchestration. NFV enables the virtualization of network functions, 

allowing for efficient resource allocation and rapid deployment of virtualized functions. 

Together, SDN, NFV, and O-RAN enable operators to build a flexible, agile, and cost-effective 

infrastructure that supports diverse 5G use cases and fosters innovation in the 
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telecommunications industry [3]. 

Open Radio Access Network (O-RAN) [2] architecture is designed to revolutionize 

the RAN industry, making it more open, adaptable, and intelligent. Security analyses of O-

RAN highlight its architectural blueprint, risk areas, threat actors, and potential threats, 

emphasizing the need for increased security measures. These analyses address vulnerabilities, 

such as the communication interface between network controllers, and propose mitigation 

strategies. Additionally, they explore the security and privacy challenges posed by Open RAN, 

discuss relevant standardization efforts, and emphasize the importance of secure design. The 

virtualized and open nature of O-RAN introduces new risks, requiring comprehensive risk 

assessments, security analyses, and testing to ensure information security. Overall, these 

studies stress the significance of prioritizing security to ensure the future security and 

sustainability of O-RAN networks. 

The O-RAN interface [4] refers to the connection and interaction between different 

network controllers within the architecture. These controllers are responsible for managing 

and coordinating various functions and components of the RAN. In O-RAN, the network 

controllers play an essential role in enabling communication between different elements of 

the RAN, such as base stations, virtualized network functions, and centralized management 

systems. They ensure proper coordination and control of the RAN operations, including the 

management, configuration, and optimization of radio resources. The interface for 

communication between these network controllers is An indispensable element within the O-

RAN framework. It facilitates the exchange of control signals, management information, and 

data among the controllers. This interface allows them to collaborate and coordinate their 

actions to ensure seamless operation and efficient management of the RAN. 

However, the communication interface can also be a potential point of vulnerability if 

not properly secured [5]. An attacker who gains unauthorized access or manipulates the 

communication interface may disrupt the coordination between network controllers, 
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compromise the security and privacy of the information being exchanged, or inject malicious 

commands or data into the system. To address these security concerns, it is important to 

analyze and identify potential vulnerabilities and threats associated with the communication 

interface. This includes evaluating the robustness of the protocols, encryption mechanisms, 

authentication, and access control measures employed in the interface. By understanding these 

vulnerabilities, researchers, and practitioners can propose appropriate mitigation strategies 

and security enhancements to protect the communication interface and ensure the 

comprehensive security of the O-RAN architecture. 

Establishing standards [6] is crucial for both the advancement and effective 

deployment of O-RAN architectures. It involves the establishment of common protocols, 

interfaces, and specifications that facilitate interoperability and compatibility among various 

components and vendors within the O-RAN ecosystem. Standardization efforts aim to ensure 

that O-RAN implementations from different vendors can seamlessly work together, fostering 

a more open and competitive market. By adhering to common standards, O-RAN deployments 

become more flexible, allowing network operators to combine components from different 

vendors, promoting innovation, and minimizing vendor lock-in. 

From a security perspective, standardization efforts also address security 

requirements, guidelines, and best practices specific to O-RAN. These security standards aim 

to define security mechanisms, protocols, and procedures to protect the O-RAN infrastructure 

from various threats and vulnerabilities. Standardization organizations like the O-RAN 

Alliance [7], work collaboratively to create and refine these protocols for security. They 

engage industry stakeholders, including network operators, equipment vendors, researchers, 

and regulators, to ensure a comprehensive and effective approach to security. 

By adhering to security standards, O-RAN deployments can benefit from proven 

security measures, as well as ongoing advancements and updates. Standardization also 

facilitates the development of security certification processes, enabling network operators to 
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assess and verify the security posture of O-RAN solutions and make informed procurement 

decisions. Overall, standardization efforts in the context of O-RAN are essential for 

establishing a common framework that ensures interoperability, flexibility, and security. They 

provide a foundation for secure and harmonious collaboration among different components, 

vendors, and stakeholders within the O-RAN ecosystem. 

Security risks in O-RAN [8] refer to the potential vulnerabilities and threats that arise 

from the adoption and implementation of this innovative mobile network infrastructure. O-

RAN introduces a software-defined and virtualized network architecture, which offers 

benefits such as increased flexibility and interoperability. However, it also brings along 

specific cybersecurity risks that organizations need to address to protect and secure their 

network systems. 

One significant security risk in O-RAN is related to network vulnerabilities. The use 

of open interfaces and APIs in O-RAN's design can expose the network to a wider range of 

cyber threats [9]. Malicious actors can target vulnerabilities in software components or exploit 

insecure APIs to gain unauthorized network access. These attacks can lead to various 

consequences, including breaches of data security, compromising data integrity, or launching 

many other cyberattacks. 

While O-RAN presents several advantages, including increased flexibility and cost-

effectiveness in mobile network infrastructure, it also brings along specific cybersecurity risks 

that organizations need to address. The open nature of O-RAN, with its software-defined and 

virtualized network architecture, creates a more interconnected and accessible environment, 

which can potentially expose the network to a broader spectrum of cyber threats. 

The open and interoperable design of O-RAN facilitates innovation and flexibility but 

also introduces significant security vulnerabilities. The separation of network components and 

the dependency on software-driven functionalities can create multiple potential attack points 

if not adequately protected. Integrating security measures into the Software Development 
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Lifecycle (SDLC) from the initial design phase is essential for mitigating these risks. 

Implementing a Secure Software Development Lifecycle (SSDLC) ensures that security best 

practices are embedded throughout the development process, from design to deployment and 

maintenance. This strategy not only aids in the early detection and resolution of potential 

security issues but also embeds security as a fundamental component of the O-RAN 

architecture, thereby strengthening the network against potential threats and attacks. 

The aim of this paper is to investigate the security leakage of O-RAN and explore the 

effectiveness of robust security testing tools in mitigating such leaks. By examining the 

current state of O-RAN security and evaluating the capabilities of advanced security testing 

tools, we can develop an all-encompassing framework to strengthen the security posture of O-

RAN deployments. This framework will not only protect against potential leaks but also 

strengthen the overall resilience of the telecommunications infrastructure, instilling 

confidence in the viability and security of O-RAN networks. 

Through this research, our objective is to enrich the existing knowledge base on O-

RAN security while offering actionable recommendations tailored for operators, vendors, and 

regulatory bodies to strengthen the security of their O-RAN deployments. By proactively 

addressing security leakage through the application of robust security testing tools, we can 

enable the widespread adoption of O-RAN while maintaining the integrity and confidentiality 

of essential network infrastructure in the face of evolving security threats. 
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Chapter 2 Background 

2.1 O-RAN ALLIANCE 

The O-RAN Alliance [7] , also known as the Open Radio Access Network Alliance, is 

an international industry consortium established in 2018. It aims to promote open and 

interoperable standards for the Radio Access Network (RAN) within mobile 

telecommunications systems. By developing open interfaces and specifications, the alliance 

enables multi-vendor interoperability, fosters competition, and avoids vendor lock-in. The O-

RAN Alliance concentrates on multiple facets of RAN, including virtualization, network 

intelligence, and the application of artificial intelligence and machine learning. Its goal is to 

create a flexible, cost-effective, and efficient RAN architecture that supports the evolving 

requirements of 5G and future mobile networks. The alliance collaborates with other 

standardization bodies to ensure alignment and widespread the implementation of open RAN 

standards within the industry. 

The O-RAN Alliance consists of 11 work groups (WGs) and 3 focus groups (FGs). 

The Technical Steering Committee (TSC) oversees the WGs responsible for O-RAN 

specification work, each covering a distinct segment of the O-RAN framework. Security is of 

utmost importance in the O-RAN architecture, leading to the creation of the Security Focus 

Group (SFG) to manage security elements throughout the open RAN ecosystem. While focus 

groups typically don't engage in O-RAN specifications, the SFG operates differently. It has 

released multiple technical specifications and operates similarly to a work group (WG), 

resulting in its transformation into WG11 (Security) Figure 1 [10]. 
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Figure 1: The structure of the O-RAN Alliance Technical Steering Committee 

The O-RAN ALLIANCE Security Work Group (WG11) [11] is actively working on 

developing specifications to create a secure and interoperable open RAN system for mobile 

network operators. In 2022, they elevated the Security Focus Group (SFG) to a Work Group, 

underscoring their commitment to security in the design of their systems. 

WG11 regularly updates the public about their progress through announcements. These 

announcements outline their activities, focus areas, security controls, and timelines. Their 

work is structured around four key security specifications: 

1. O-RAN Security Threat Modeling and Remediation Analysis 4.0: This entails a risk-

based methodology to identify and mitigate potential threats, facilitating the creation 

of a secure O-RAN framework. 

2. O-RAN Security Requirements Specifications 4.0: These specifications detail the 

security requirements for all components of O-RAN, addressing areas such as 

confidentiality, integrity, and availability protection. They include critical security 
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controls such as authentication, authorization, and the principle of least privilege 

access control. 

3. O-RAN Security Protocols Specifications 4.0: This specification outlines the 

implementation requirements for security protocols utilized within O-RAN, 

including SSH, IPSec, DTLS, TLS 1.2, and TLS 1.3. 

4. O-RAN Security Tests Specifications 3.0: This documentation details the security 

testing procedures necessary to validate and verify the implementation of security 

functions, configurations, and protocol requirements in O-RAN. It's an essential step 

toward ensuring the verifiability of O-RAN security requirements. 

These security specifications are meant to ensure that O-RAN are secure, reliable, and 

compliant with industry standards. WG11 updates the specifications regularly, and these 

updates can be found on the O-RAN ALLIANCE website. 

2.2 O-RAN Software Community (OSC) 

The O-RAN Software Community (OSC) [12] is a joint effort between the O-RAN 

Alliance and the Linux Foundation, with the goal of creating software for the Radio Access 

Network (RAN) in the context of the telecom industry's transformation and the emergence of 

5G technology. The community intends to utilize existing LF network projects, while tackling 

challenges related to performance, scalability, and 3GPP alignment. Open source is seen as a 

crucial means to speed up product development collaboratively and economically. 

The focus of the OSC is to align with the O-RAN Alliance's open framework and 

specifications, enabling industry deployment. As an emerging open-source community within 

the Linux Foundation, it will develop open source software for disaggregated radio access 

networks that are modular, open, smart, efficient, and flexible. 
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These following are the O-RAN software version released by OSC [13]: 

 Amber (A) Release : (Nov 2019) 

 Bronze (B) Release : (Jun 2020) 

 Cherry (C) Release : (Dec 2020) 

 D release : (Jul 2021) 

 E Release : (Dec 2021) 

 F Release : (Jun 2022) 

 G Release : (Dec 2022) 

 H Release : (Jun 2023) 

 I Release : (Dec 2023) 

 J Release : (Jun 2024) 

 K Release : (Dec 2024) 

The O-RAN Software Community (OSC) plays a crucial role in strengthening the 

security posture of the O-RAN ecosystem. As a collaborative open-source community, OSC 

faces various security threats commonly found in the software development landscape [14]. 

These threats encompass cybersecurity risks, supply chain vulnerabilities, interoperability 

challenges, and the potential for malicious contributions. OSC actively addresses these threats 

by adopting industry best practices, including regular code audits, vulnerability management, 

and secure development guidelines [15]. They emphasize supply chain security by validating 

code contributions and scrutinizing third-party dependencies to minimize the risk of 

compromised software components. Furthermore, OSC promotes awareness and education 

among its community members to enhance their ability to identify and mitigate security 

vulnerabilities. 
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The OSC's commitment to security extends to interoperability and integration 

concerns within the O-RAN ecosystem. While interoperability is a key objective, it can 

introduce risks if not managed effectively. OSC conducts thorough testing and validation to 

guarantee the compatibility and security of software integrations, thus reducing the risk of 

vulnerabilities arising from misconfigurations or incompatibilities [16]. By addressing these 

security challenges comprehensively, OSC strives to create a robust and secure O-RAN 

ecosystem, making it a safer environment for telecommunications network deployment and 

operation. To stay current with OSC's evolving security practices and efforts in addressing 

security threats, it is advisable to consult their latest resources and official documentation. 

2.3 O-RAN Architecture 

The architecture of O-RAN represents a revolutionary transformation of traditional 

Radio Access Networks by embracing key principles such as openness, virtualization, 

intelligence, interoperability, flexibility, cost-effectiveness, and innovation. By emphasizing 

openness and promoting vendor-neutral interfaces, O-RAN enables network operators to 

diversify their RAN components, leading to healthy competition and driving innovation in the 

industry. The introduction of virtualization further enhances the architecture, decoupling 

software functions from hardware and providing the flexibility to deploy network functions 

on commodity hardware or in the cloud. This virtualized approach ensures efficient resource 

utilization and scalability, enabling operators to adapt their networks quickly to meet evolving 

demands. 

From Figure 2[17] the main part of O-RAN framework is the RAN Intelligent 

Controller (RIC) [18], which adds intelligence and real-time optimization capabilities to the 

network. The RIC dynamically manages RAN functions, optimizing resource allocation, and 

enhancing overall network performance. Standardized interfaces facilitate seamless 

communication and coordination between different RAN components, streamlining network 
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integration and simplifying upgrades. The interoperability achieved through these interfaces 

ensures that diverse components from multiple vendors can work together cohesively. 

This level of flexibility and interoperability, combined with O-RAN's emphasis on 

cost-effectiveness, empowers operators to make optimal infrastructure investments and reduce 

operational expenses. Moreover, the focus on innovation fosters collaboration and opens the 

door for third-party developers to contribute to the ecosystem, driving the creation of cutting-

edge technologies and services. Ultimately, the O-RAN architecture empowers network 

operators to deliver high-quality services, adapt swiftly to changing demands, and embrace a 

new era of wireless network deployments [19]. 

 

Figure 2: Architecture of O-RAN 

O-RAN is also a universal and standardized framework for mobile 

telecommunications networks, closely aligned with open source and open interface principles 

[20]. It emphasizes openness, interoperability, and standardization to break down the 

traditionally closed and proprietary nature of radio access networks. O-RAN promotes open 

interfaces between network elements, like radio units (RUs), distributed units (DUs), and 

centralized units (CUs). These open interfaces encourage collaboration between different 
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vendors, fostering interoperability and competition. Moreover, O-RAN leverages open-source 

software principles, including initiatives like the O-RAN Software Community (OSC) [16], 

which offers software building blocks, reference designs, and tools for developing radio 

access network components. This approach not only enhances flexibility and innovation but 

also contributes to lower costs, ultimately benefiting both network operators and end-users in 

the mobile telecommunications industry [21]. 

Security threats and attacks in the realm of open source and open interface 

technologies [22] resemble those encountered in any software or networked environment. 

Common risks include malware and ransomware threats that can compromise systems, zero-

day exploits exploiting undiscovered vulnerabilities, DoS attacks overwhelming systems, 

supply chain attacks compromising trusted software sources, man-in-the-middle attacks 

intercepting and altering data, data breaches revealing sensitive information, authentication 

and authorization bypass vulnerabilities, code injection attacks potentially leading to system 

compromise, web application vulnerabilities like XSS and CSRF, and brute force attacks 

exploiting weak configurations. Vigilance, patching, strong security measures, and proactive 

monitoring are essential to mitigate these risks [23]. 

2.4 O-RAN Components 

2.4.1 SMO (Service Management and Orchestration Framework) 

Service Management and Orchestration (SMO) is a crucial element within O-RAN 

framework [24]. It is responsible for orchestrating and managing various services and 

resources in the radio access network. SMO's primary functions include service orchestration, 

resource management, automation of network tasks, service assurance, and ensuring 

interoperability between different network components and vendors. By performing these 

tasks, SMO helps optimize resource utilization, reduce operational costs, and enhance service 
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quality, making it an essential component in the development of open and efficient 

telecommunications networks, particularly in the 5G and beyond 5G era. The essential 

capabilities of the SMO that provide RAN support in O-RAN include: 

• FCAPS* interface to O-RAN Network Functions 

• Non-RT RIC for RAN optimization 

• O-Cloud Management, Orchestration and Workflow Management 

(*FCAPS = Fault, Configuration, Accounting, Performance, Security) 

The SMO delivers these services via 4 primary interfaces to the O-RAN elements [17]. 

 - A1 Interface: Connects the Non-RT RIC in the SMO to the Near-RT RIC for 

RAN optimization. 

 - O1 Interface: Links the SMO to the O-RAN network functions for FCAPS 

support. 

 - In the hybrid model, Open Fronthaul M-plane interface: Connects the SMO to 

the O-RU for FCAPS support. 

 - O2 Interface: Connects the SMO to the O-Cloud to provide platform resources 

and manage workloads. 

Ensuring the security of the Service Management and Orchestration (SMO) 

component within the O-RAN architecture is crucial for creating a self-regulating network 

environment. This is crucial for maintaining the overall performance of O-RAN and protecting 

subscriber data and privacy. Insufficient authentication and authorization protocols for both 

external and internal SMO connections can lead to unauthorized access. This could 

compromise sensitive Open RAN information and enable malicious entities to interfere with 

network operations. O-RAN's foundation in RAN virtualization brings deployment-specific 

security challenges related to virtualization and software-defined networking, including issues 

with VM migration, instantiation, hypervisor, orchestration, and SDN controller security [25]. 
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Furthermore, in O-RAN's cloud-native deployment, the shared BBU pool introduces privacy 

and data access risks. While O-RAN offers flexible services, it's crucial to consider these 

security challenges in the context of its open and virtualized approach. 

DoS attacks or a surge in traffic can lead to overloads, impacting the accessibility of 

SMO data and functions. Vulnerabilities in orchestrator configurations, access controls, and 

isolation measures can be exploited by attackers. In scenarios where a single orchestrator 

oversees multiple virtual machines and containers that are taken care of by many teams and 

possess varying levels of sensitivity, improper user and group access permissions could allow 

an attacker or negligent user to disrupt the operation of other virtual machines or containers 

under the orchestrator's management. Additionally, there is a risk of harmful network traffic 

emanating from various virtual machines or containers that share the same virtual networks, 

especially when virtual machines or containers with varying sensitivity levels utilize the same 

virtual network, leading to insufficient isolation and potentially compromising network 

security. Proper security measures and access control are essential to mitigate these risks 

which are described in Table 1 [8]. 

Table 1: SMO risks in O-RAN 

Threat Description 

Lack of or incorrect 

authentication 

Improper or missing authentication on SMO functions can 

be exploited to gain unauthorized access to the SMO and its 

functionalities. [26]. 

Denial-of-Service attacks Executes excessive load or Inundating DoS attacks on SMO 

[26]. 

Security concerns related to 

orchestration 

Takes advantage of weak orchestrator configuration, 

insufficient access control, and poor isolation [26]. 
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2.4.2 Non-RT RIC (Non Real Time RAN Intelligent Controller) 

Non Real Time RAN Intelligent Controller (Non-RT RIC) [27] is a vital component 

within the O-RAN framework, situated in SMO layer, facilitating intelligent optimization of 

RAN. Its primary role is to offer guidance based on established policies, manage ML models, 

and enrich data for the Near-RT RIC through A1 interface. Additionally, Non-RT RIC can 

carry out intelligent management of radio resources at non-real-time periods, typically 

exceeding 1 second, and leverage data analysis and artificial intelligence and machine learning 

methods to identify improvement measures. It interfaces with SMO services for example data 

acquisition and provisioning services, as well as the O1 and O2 interfaces, to access and 

exchange necessary data for RAN enhancement. 

Non-RT RIC consists of 2 sub-functions [17]: 

 Non-RT RIC Framework: This functionality is internal to the SMO Framework, 

logically terminating the A1 interface and exposing the necessary services to rApps 

via its R1 interface. 

 Non-RT RIC Applications (rApps): These are modular applications that utilize the 

functionality provided by the Non-RT RIC Framework to carry out RAN optimization 

and other functions. The services exposed to rApps through the R1 interface allow 

them to gather information and initiate actions (e.g., policies, re-configuration) via the 

A1, O1, O2, and Open FH M-Plane related services. 

The Non-RT RIC Framework is responsible for exposing all necessary functionalities to the 

rApps, whether these functionalities originate from the Non-RT RIC Framework itself or the 

SMO Framework. 

From Figure 3 [27] explains the reference architecture of the Non-RT RIC a 

component of the SMO framework. There are three categories of logical functionalities within 

the Non-RT RIC framework and SMO framework. 
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 Functions Anchored Inside the Non-RT RIC Framework: 

These functions are integral to the Non-RT RIC framework, closely tied to its core 

operations, and responsible for core RAN optimization tasks. This is indicated in solid 

blue box. 

 Functions Anchored Outside the Non-RT RIC Framework: 

These functions exist externally but interact with the Non-RT RIC through defined 

interfaces, providing complementary services like data collection from O-RAN nodes. 

This is indicated in solid orange box. 

 Non-Anchored Functions: 

These functions operate independently, often without direct integration with the Non-RT 

RIC, but can still influence or be influenced by RAN behavior within the O-RAN 

architecture. This is indicated in dashed line box. 

 

Figure 3: Non-RT RIC Reference Architecture 

rApps within the Non-RT RIC framework [28] can impact critical functions like 

AI/ML model creation, A1 policy administration, data improvement, and network 

configuration optimization, which can be exploited for purposes like degrading network 
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performance, initiating DoS attacks, and intercepting enrichment data such as UE site, track, 

directions, and GPS information. These rApps share similarities with xApps and can influence 

the behavior of specific cells, groups of UEs, or individual UEs, leading to attacks similar to 

xApps. These attacks can arise from malicious rApps, vulnerable rApps, misconfigured 

rApps, compromised rApps, or conflicting rApps that are summarized in Table 2 [8]. In 

addition to these familiar risks, two additional vulnerabilities specific to Non-RT RIC are 

identified. 

Table 2: Non-RT-RIC risks 

Threat Description 

DDoS attack An attacker breaches the component to initiate attacks or 

reduce efficiency [26]. 

Sniffing attacks through the 

A1 interface for UE 

identification 

An attacker conducts UE sniffing in the Non-RT RIC 

through the A1 interface or via the R1 interface using rApps 

to identify UE. For instance, a rApp could potentially be 

used as a "sniffer" for UE identification [26]. 

Vulnerabilities and 

misconfiguration in rApps 

Vulnerabilities can potentially exist in any rApp if it is 

sourced from an untrusted or unmaintained origin. An 

attacker exploits these vulnerabilities and 

misconfigurations in such rApps to disrupt the provided 

network service and potentially take over another rApp or 

the entire Non-RT RIC [2], [26], [29]. 

Weak authentication and 

authorization in rApps 

If software vulnerabilities are present in web front-end or 

REST API interfaces or lack proper authentication and 

authorization mechanisms, an attacker could exploit these 

weaknesses to bypass controls and access the rApp, 
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impersonating a tenant. This would allow the attacker to 

manipulate configurations, access logs, and implement 

backdoors [26], [29], [30]. 

Compromising isolation in 

rApps 

Attackers can breach rApp separation and escape 

restrictions. This allows them to conduct an auxiliary route 

attack, extracting data from co-hosted within a common 

asset [26]. 

Conflicts in rApps Conflicting directly, indirectly, and implicitly either 

inadvertently or with malicious intent impacts non-realtime 

Open RAN system functions like managing carrier license 

schedules, optimizing energy usage, and handling 

subscriptions. This can result in reduced efficiency or even 

Denial of Service attacks. [26]. 

Untrusted or poorly maintained sources can introduce vulnerabilities [31] into any 

rApp, potentially leading to disruptions in network services and even compromising the entire 

Non-RT RIC. By taking advantage of these weaknesses, attackers might manipulate 

information communicated over the A1 interface and extracted crucial data, or take control of 

other rApps. Furthermore, attackers can exploit rApp isolation to escape from confinement 

and access data from co-hosted rApps. Unpermitted entry opens avenues for exploiting 

vulnerabilities [32] in additional rApps or components of Open RAN, facilitating actions like 

intercepting and spoofing network traffic and launching DoS attacks. Attackers may also 

infiltrate the Non-RT RIC via A1 interface or O1 interface or outside entities via SMO to 

initiate attacks or reduce efficiency. 

rApps can create conflicts due to their launch by different vendors with varying 

objectives like carrier license management or energy efficiency measures. These conflicts can 

manifest as direct, indirect, or implicit, according to the specific factors and their effects. 
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Direct conflicts involve multiple rApps requesting the same parameter change, indirect ones 

occur when different parameter changes yield opposing effects, and implicit conflicts arise 

when parameter changes impact network states. These conflicts can result in network 

performance degradation and instabilities, and they are challenging to mitigate due to hidden 

dependencies. Additionally, there's a vulnerability risk if rApp management interfaces are 

exposed to web front-ends [33] or REST APIs with software interface vulnerabilities [34] or 

inadequate authentication and authorization, potentially allowing attackers to gain 

unauthorized access, pose as tenants, alter configurations, access logs, or establish backdoors. 

2.4.3 Near-RT RIC (Near Real Time RAN Intelligent Controller) 

Near Real Time RAN Intelligent Controller (Near-RT RIC) [35] plays a crucial role in 

near-real-time management and optimization of E2 Nodes' functions and resources, utilizing 

accurate data collection and actions with control loops functioning within 10 milliseconds to 

1 second. It contains one or more xApps utilizing the E2 interface for gathering near real-time 

data, including individual user or cell-based information, and provide value-added services. 

The Near-RT RIC's control over E2 Nodes is guided by policies and enrichment data from the 

Non-RT RIC via the A1 interface. This allows the Near-RT RIC to produce RAN analytics 

information, which can be accessed through the Y1 interface. The distribution of Radio 

Resource Management (RRM) functions between the Near-RT RIC and the E2 Node is 

determined by the E2 Service Model. This model specifies the capabilities of the E2 Node and 

outlines the specific RRM responsibilities for each function. In the event of a Near-RT RIC 

failure, basic services will continue to operate; however, value-added services that depend on 

the Near-RT RIC may experience interruptions. 

xApps are essential to the Near-RT RIC infrastructure in telecommunications networks 

[36]. These software applications collect and process fine-grained, near real-time data from 

network elements, like user equipment and base stations, enabling real-time network control 
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and optimization. xApps operate based on predefined policies, providing value-added services 

like dynamic network management, load balancing, and traffic steering. They respond 

dynamically to changing network conditions, ensuring optimal performance. xApps are 

customizable, allowing network operators to develop specialized solutions, and they work in 

conjunction with the RIC architecture to enhance network efficiency, quality of service, and 

user experience. 

There are many functions in Near RT RIC. The details are shown below and these 

functions architecture are shown in Figure 4 [35]:   

 Database, and related SDL (Shared Data Layer) services, which enables 

reading and writing of RAN/UE information and other data necessary to 

accommodate particular use cases; 

 xApp subscription management, this function consolidates subscriptions 

from multiple xApps and facilitates the unified distribution of data to these 

xApps; 

 Conflict mitigation, which addresses potentially intersecting or conflicting 

demands from multiple xApps; 

 Messaging infrastructure, this function enables message interaction among 

internal functions within Near-RT RIC; 

 Security, this function sets up the security framework for xApps.; 

 Management Function: 

- Provision of fault management, configuration management, and 

performance management services to the SMO. 

- Implementation of logging, tracing, and metrics collection to capture, 

monitor, and collect the status of Near-RT RIC internals, with the 

ability to transfer this data to an external system for further 

evaluation. 
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 Interface Termination: 

- E2 interface termination from an E2 Node. 

- A1 interface termination from the Non-RT RIC. 

- O1 interface termination from the SMO. 

- Y1 interface termination from a Y1 consumer. 

 Functions hosted by xApps, which enable services to be executed at the 

Near-RT RIC, with the results being sent to E2 Nodes through the E2 

interface; 

 API Enablement A function that facilitates operations pertaining to the Near-

RT RIC API, encompassing tasks such as managing the API repository and 

registry, handling authentication, enabling discovery, and supporting generic 

event subscriptions; 

 AI/ML support: 

- Pipeline management, training processes, and performance monitoring for 

xApps. 

 xApp Repository Function: 

- Selecting xApps for A1 message routing based on A1 policy types and 

operator policies; 

- Managing access control of A1-EI types for xApps according to operator 

policies. 
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Figure 4: Near-RT RIC Internal Architecture 

xApps possess the ability to influence the behavior of specific cellular elements, 

groups of user equipment (UEs), and individual UEs. Security concerns arise from various 

sources, including harmful xApps, xApps with security weaknesses, improperly configured 

xApps, breached xApps, and xApps that have conflicts [26]. These threats are significant 

because xApps are engineered for executing intelligent operations. related to radio resource 

management for cellular and device entities. A compromised xApp can potentially take control 

of cells or devices, enabling tracking of specific consumers within the network. Moreover, 

malicious xApps can access priority information via the A1 interface, compromising location 

privacy and service prioritization, ultimately leading to compromised RAN (Radio Access 

Network) performance and privacy violations that are summarized in Table 3 [8]. 
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Table 3: Near-RT-RIC risks 

Threat Description 

Tracking the location of User 

Equipment (UE) and altering 

UE priority caused by 

malicious xApps 

XApps have the capacity to impact the behavior of 

individual cells, clusters of User Equipments (UEs), and 

particular UEs for purposes such as subscriber tracking or 

adjusting UE priority levels [26], [29]. 

Identification of User 

Equipment (UE) facilitated 

by malicious xApps 

Malicious xApps can manipulate the identification of User 

Equipments (UEs) and monitor their locations. For 

instance, an xApp might serve as a 'sniffer' to identify UEs 

[26], [29], [30]. 

Vulnerabilities and 

misconfigurations within 

xApps 

Potential vulnerabilities may be present in any xApp 

sourced from an untrusted or unmaintained origin. 

Attackers can exploit these vulnerabilities and 

misconfigurations in xApps with the intention of disrupting 

the current network service and possibly taking over 

another xApp or all of near-RT RIC [2], [26], [29]. 

Conflicts in xApps Contradictory xApps, whether deployed inadvertently or 

with malicious intent, can impact the operations of the O-

RAN, including management of mobility, admission 

controls, bandwidth allocation, and load distribution, 

leading to reduced performance. Additionally, a malicious 

entity could exploit a harmful xApp to deliberately activate 

RRM actions that contradict the internal decisions of O-

gNB, with the aim of causing a Denial-of-Service (DoS) 

situation. [26], [29]. 
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Undermining the isolation of 

xApps 

By undermining xApp isolation, an attacker can escape 

xApp confinement, enabling the execution of a side-

channel attack that could facilitate the extraction of data 

from co-located xApps within a common resource pool 

[26]. 

Malicious xApps can serve as tools for unauthorized User Equipment (UE) 

identification [37], potentially leading to adverse impacts on Radio Access Network (RAN) 

performance and subscriber privacy violations. This risk arises because the A1 interface can 

pinpoint specific UEs in the network via their unique identifiers, creating correlations among 

anonymized UE identities between RAN nodes. Consequently, malicious actors could track 

UE locations and alter UE priorities, posing a significant threat, especially when identifying 

and tracking important subscribers like Very Important Persons (VIPs). E2 signaling channels 

are more prone to exposing UE identifiers compared to A1, primarily because of the Near-RT 

conditions inherent in E2. Furthermore, these malicious xApps might tamper with Service 

Level Agreement (SLA) specifications and priority levels, potentially conflicting with Near-

RT-RIC decision processes, leading to breaches of specified execution boundaries and SLAs. 

Vulnerabilities in xApps pose significant risks, as they can originate from untrusted or 

poorly maintained sources [38]. Exploiting these vulnerabilities can lead to compromising 

other xApps or even the entire Near-RT RIC, typically with the intention of impairing 

performance, such as through Denial of Service (DoS) attacks. Attackers might also tamper 

with information exchanged across A1 or E2 interfaces, enabling the extraction of sensitive 

information. Additionally, The mechanisms for segregation for xApps may possibly be altered 

to escape confinement and access data from concurrently hosted xApps. Unauthorized access 

chances to take advantage of weaknesses in other xApps or Open RAN components., enabling 

network traffic interception, spoofing, and service degradation (DoS attacks). The fact that 

xApps are open-source makes their weaknesses more apparent to potential adversaries, 
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whereas misconfigurations and incompatibilities represent inherent risks in the O-RAN 

ecosystem. 

Lack of distinct functional separation between Near-RT RIC with Open RAN Next 

Gen Node B (O-gNB) can result in disputes, both unintentional and malicious, including 

conflicts within xApps. These conflicts can affect decisions related to radio resource 

management, impacting critical Open RAN functions like management of mobility, admission 

controls, bandwidth regulation, and load distribution may lead to potential performance 

deterioration. Preserving isolation for xApps is crucial to ensure the independent functioning 

of O-RAN services and the precise decision-making of Near-RT-RIC. However, this isolation 

can be undermined by weaknesses in the system, deduction of access information through 

shared resources, or deceptive authentication attempts [39], potentially allowing attackers to 

subdue xApp operations. 

2.4.4 O-CU (Open Central Unit) 

O-CU, or Open Central Unit, is a critical component that is crucial in the radio access 

network [40]. Traditionally, the Central Unit is responsible for functions like radio resource 

management and coordination. However, in O-RAN, the O-CU is an open and standardized 

version of the Central Unit, designed to be flexible, software-defined, and vendor-neutral. It 

acts as a bridge between the Radio Unit (RU) and the Distributed Unit (DU), promoting 

interoperability and openness while allowing for network virtualization and efficient, cost-

effective network management. O-CU's software-defined nature and adherence to O-RAN 

Alliance specifications encourage interoperability, reduce vendor lock-in, and facilitate the 

deployment of agile, 5G-ready networks. 

O-CU-CP (Open Central Unit - Control Plane) and O-CU-UP (Open Central Unit - 

User Plane) [41] are specific subcomponents within O-CU in O-RAN framework, each with 

distinct functions: 
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2.4.4.1 O-CU-CP (Open Central Unit - Control Plane) 

O-CU-CP is responsible for managing the control plane functions in the radio access 

network. The control plane is primarily concerned with signaling, network management, and 

control operations, such as call setup and mobility management. O-CU-CP handles these 

control functions, including radio resource management, connection establishment, and 

handovers. It interfaces with other network elements like the Distributed Unit (DU) and the 

core network to ensure the efficient governance and administration of radio resources and 

network services. 

2.4.4.2 O-CU-UP (Open Central Unit - User Plane) 

O-CU-UP focuses on the user plane functions within the radio access network. 

Handling actual data traffic and user data packets falls under the responsibility of the user 

plane, such as internet content, voice calls, or video streams. O-CU-UP manages the 

processing and forwarding of user data, ensuring low-latency and high-throughput delivery of 

data to and from the Radio Unit (RU). It is designed to efficiently process and transport user 

data packets while minimizing delays and ensuring a high-quality user experience. 

Both O-CU-CP and O-CU-UP are integral parts of the O-CU in O-RAN, working 

together to manage CP and UP elements of the radio access network. These subcomponents 

adhere to open standards and interfaces defined by the O-RAN Alliance, contributing to the 

network's flexibility, interoperability, and cost-effectiveness while enabling innovative 

solutions and promoting vendor diversity in the network ecosystem. 

In an Open RAN cloud-native setup, the shared unit pool could lack adequate isolation, 

potentially endangering user privacy and compromising the security of confidential 

information [42]. The transparency and visibility of CU components in Open RAN, especially 

with the use of eCPRI for fronthaul, make them susceptible to cyber intrusions and hacking 

attempts, posing a greater risk compared to traditional fronthauls and C-RAN [43]. Although 
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uncommon, intrusions can happen through the F interface in the Mid-haul, linking the CU to 

DU. These intrusions may exploit threat vectors such as service migration, offloading, or 

transfer mechanisms in edge computing infrastructure hosting CU [44]. If a CU is 

compromised, it can potentially impact both the fronthaul and backhaul directions using the 

open interfaces of O-RAN. 

O-CU (Open Central Unit) in the O-RAN architecture is susceptible to a diverse array 

of security threats, including Denial of Service (DoS) and Distributed Denial of Service 

(DDoS) attacks that can disrupt network services, Man-in-the-Middle attacks that compromise 

data integrity, unauthorized access by intruders, malware infections, insider threats, and zero-

day vulnerabilities. Supply chain attacks, interoperability risks, and data leakage can further 

endanger O-CU's security. Regulatory violations and social engineering attacks may result in 

legal consequences. To safeguard O-CU, robust security measures like access controls, 

encryption, intrusion detection systems, regular updates, and security awareness training are 

crucial, alongside adherence to security standards and collaboration within the O-RAN 

community. 

Mitigating these threats is essential to protect O-CU from potential disruptions, data 

breaches, and regulatory repercussions. Implementing these security measures is necessary 

not only to ensure network integrity and user privacy but also to preserve trust and reliability 

within O-RAN context where connections are open and interoperability is an essential 

objective. 

2.4.5 O-DU (Open Distributed Unit) 

O-DU (Open Distributed Unit) plays a pivotal role in the transformation of traditional 

radio access networks. It is designed to disaggregate and virtualize critical functions within 

the network, bringing about increased flexibility and interoperability [45]. O-DU is 

responsible for tasks such as protocol termination, radio resource management, and baseband 



 

28 

processing, functioning as a key bridge between the O-RU (Open Radio Unit) and O-CU 

(Open Central Unit) in the network's data plane. Network operators can leverage this 

separation to implement best-in-class solutions from multiple vendors, reducing vendor lock-

in and promoting innovation. 

One of the key features of O-DU is its adherence to open standards and interfaces 

defined by the O-RAN Alliance. These open interfaces enable seamless communication and 

interoperability between O-DU and other O-RAN components, fostering collaboration and 

innovation within the telecommunications industry. Additionally, O-DU supports 

virtualization, allowing it to run as software on standard off-the-shelf hardware. This not only 

reduces capital expenses but also enables dynamic scaling and resource allocation based on 

the changing demands of the network, which is essential in the 5G era and future network 

deployments. 

O-DU's flexibility and adaptability are further highlighted by its ability to be deployed 

in various network scenarios. It can be utilized in macrocells, small cells, and even at the 

network edge, making it a versatile component suitable for diverse 5G and future network 

deployment strategies. Overall, O-DU in O-RAN is a critical element in the quest for open, 

intelligent, and agile radio access networks. It empowers network operators to build more 

flexible, interoperable, and innovative RAN solutions, which can lead to cost savings, 

enhanced network performance, and a more competitive and dynamic telecommunications 

landscape. 

Security risks encompass the potential consequences of security threats. They can 

manifest in various forms, including data breaches where sensitive information is exposed, 

leading to a loss of confidentiality. Data integrity compromises involve unauthorized 

alterations or destruction of data, eroding trust in data accuracy [46]. Service disruptions, often 

caused by DDoS attacks or cyber incidents, can disrupt operations, leading to downtime and 

financial losses. Organizations also face financial risks associated with the costs of 
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investigating, mitigating, and recovering from security incidents, including fines, legal fees, 

and compensation to affected parties. Reputation damage is a significant risk, as loss of trust 

and credibility among customers, partners, and stakeholders can result in declining customer 

bases and partnerships. Furthermore, non-compliance with data protection and privacy 

regulations can have serious legal consequences, potentially leading to regulatory fines. 

The O-DU (Open Distributed Unit) is susceptible to a variety of cyberattacks. 

Distributed Denial of Service (DDoS) attacks can overwhelm the O-DU with an avalanche of 

traffic, causing service disruptions and downtime. Malware attacks, such as viruses and 

Trojans, can compromise the O-DU's integrity and spread across the network. Phishing attacks 

target network administrators, attempting to deceive them into revealing sensitive credentials, 

thereby gaining unauthorized access. Man-in-the-Middle (MitM) attacks can intercept and 

manipulate communication, compromising data integrity and confidentiality. Insider threats, 

stemming from individuals with access to the O-DU, pose significant risks, potentially leading 

to unauthorized access or data breaches. Software exploits can take advantage of 

vulnerabilities in the O-DU's software, granting attackers unauthorized control. Zero-day 

attacks are particularly concerning as they exploit previously unknown flaws before patches 

are available. Brute force attacks involve systematic attempts to gain O-DU access by trying 

numerous username and password combinations. Data integrity and security are at risk from 

interception and injection attacks. These attacks have the potential to impact network 

operations and threaten security, and lead to unauthorized access, data breaches, or service 

outages, emphasizing the critical need for robust cybersecurity measures to safeguard the O-

DU and the broader O-RAN network. 

The impact of security threats can be wide-ranging and significant, affecting both 

individuals and organizations. Financial impacts include the costs associated with 

investigating, mitigating, and recovering from security incidents, along with possible legal 

expenses, regulatory penalties, and reparations to affected parties. Operational impacts are 
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common and result from disruptions to normal business operations, including downtime, loss 

of data, and system unavailability. Reputation damage can be severe, leading to a loss of trust 

and confidence in the organization, which, in turn, can result in a reduced customer base and 

fewer partnerships. In cases of intellectual property theft, the loss of sensitive information, 

trade secrets, or proprietary data can have long-term consequences for an organization's 

competitive advantage. The multifaceted nature of these impacts underscores the importance 

of robust cybersecurity measures, proactive policies, and training to safeguard against security 

threats and minimize their potential repercussions. 

2.4.6 O-RU (Open Radio Unit) 

The O-RU, or Open Radio Unit, serves as a cornerstone component of the network's 

architecture, ushering in a new era of openness, flexibility, and innovation in the 

telecommunications industry. O-RUs are hardware entities typically deployed at cell sites and 

are charged with managing the network's radio aspects. This includes housing radio 

transceivers, antennas, and necessary processing functions. What makes O-RUs especially 

significant is their open nature, featuring standardized interfaces that promote interoperability 

among various components within the network. This open architecture empowers network 

operators to transcend vendor lock-in and select components from different suppliers, 

fostering a more competitive and dynamic telecommunications landscape. 

One of the key functions is to connect O-DU and O-CU by a fronthaul connection, 

which is typically based on established standards like Common Public Radio Interface (CPRI) 

or Ethernet. This separation of the radio unit (O-RU) from the distributed unit (O-DU) offers 

a high degree of flexibility in network design, allowing operators to tailor their networks to 

specific requirements and use cases. O-RUs also have the capability to support virtualization, 

enabling their integration into virtualized network environments. This not only enhances 

resource utilization but also streamlines network management, making it more efficient and 
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adaptable to changing demands. 

Furthermore, O-RUs are designed to be versatile, accommodating various frequency 

bands and radio access technologies, making them well-suited for the dynamic landscape of 

5G and future generations of wireless technology. By facilitating the integration of multi-band 

and multi-RAT (Radio Access Technology) support, O-RUs are instrumental in ensuring 

networks remain adaptable to evolving technologies and user needs. Overall, O-RUs are 

pivotal in the O-RAN framework, as they provide a standardized, interoperable, and flexible 

interface that not only separates and connects radio equipment but also underpins the broader 

goals of O-RAN to drive innovation, reduce operational costs, and increase the effectiveness 

of wireless networks. 

Security threats in O-RUs within O-RAN (Open Radio Access Network) systems pose 

significant risks to network integrity, confidentiality, and availability. These threats encompass 

unauthorized access, potentially leading to network disruptions and eavesdropping on 

sensitive data. Denial of Service (DoS) attacks are aimed at overwhelming O-RUs with 

excessive traffic, resulting in network downtime and a reduction in service quality. Man-in-

the-Middle (MitM) attacks can intercept and manipulate data, compromising the integrity and 

confidentiality of communications. Firmware and software exploitation seek to exploit 

vulnerabilities, allowing attackers to gain unauthorized control over O-RUs, enabling them to 

make unauthorized configuration changes and causing network disruptions. Spoofing and 

impersonation may lead to unauthorized access and data manipulation. Eavesdropping on 

radio signals can compromise data confidentiality, while physical attacks and malware/viruses 

have the potential to disrupt operations and compromise network security.  

Protecting O-RUs against these threats necessitates the implementation of strong 

security protocols, such as cryptographic techniques, robust authentication, authorization 

controls, systems for detecting intrusions, regular security updates, and adherence to security 

policies. The open architecture of O-RAN can enhance security through the promotion of 
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multi-vendor solutions and transparency but ensuring security in O-RU deployments requires 

close collaboration among network operators, equipment vendors, and regulatory bodies to 

establish and enforce security standards and best practices. 

2.4.7 O-Cloud 

The O-Cloud Platform is a comprehensive system comprising both hardware and 

software components designed to offer cloud computing capabilities for executing Radio 

Access Network (RAN) functions [47]. The hardware includes computing, networking, and 

storage elements, with the potential incorporation of acceleration technologies to meet 

performance goals. The software component provides open and well-defined APIs, facilitating 

the coordination and administration of the NF Deployment's lifecycle and the O-Cloud itself. 

Notably, the software is independent of the hardware, allowing flexibility in sourcing from 

different vendors. 

The management of cloudified Radio Access Network functions brings about new 

considerations, as the mapping between network functionality and physical hardware can vary 

based on the chosen scenario. This variability requires flexibility in the design of management 

aspects related to physical elements rather than logical ones. Examples include logging of 

physical functions, scale-out actions, and considerations related to survivability, all of which 

are influenced by the chosen mapping between network functionality and physical hardware. 

Relocating Open-RAN elements to the cloud creates a unique threat environment, 

especially regarding the possible actions of a compromised cloud provider [48]. Recent risk 

assessments accurately emphasize that a cloud provider managing the O-Cloud has 

capabilities similar to those of the RAN operator. Given the current scarcity of required safety 

protocols in O-RAN standards, 2 particular suggestions emerge to address these concerns: 

firstly, integrating security measures, such as Secure Execution Environments secondly, 

embedding incorporating compulsory access control and security protocols into the O-RAN 
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framework. While a compromised cloud provider could threaten RAN security, operators 

typically plan to establish and manage proprietary data centers instead of depending on 

external cloud services. Consequently, assigning the same level of trust to the O-Cloud 

operator as to the RAN-Operator effectively mitigates the scenario involving a malicious 

cloud provider. 

Furthermore, it is strongly advised to exclusively utilize trusted data centers and cloud 

services for the O-Cloud. Protecting against compromised cloud providers [49], particularly 

by utilizing confidential computing and secure execution environments, presents a significant 

challenge due to numerous attack vectors arising from a powerful attacker model. The 

recommendation emphasizes that if the O-Cloud is trusted and follows standard security best 

practices in both configuration and design, the expected security risk associated with a cloud-

based RAN should be minimal. 

2.5 O-RAN Interfaces 

The O-RAN interfaces serve as the primary enablers of the O-RAN vision, striving to 

establish a more open, intelligent, and flexible Radio Access Network. The O-RAN interfaces 

connect different RAN components from different vendors and allow them to exchange data 

and control signals. The O-RAN interfaces also provide access to the RAN Intelligent 

Controllers, which can optimize and manage the network using AI and ML techniques. The 

O-RAN interfaces are built upon the foundation of 3GPP standards. but with some extensions 

and modifications to support the O-RAN features and functions [4]. 

2.5.1 3GPP interfaces 

3GPP-defined interfaces are the ones that follow the standards and specifications of 

the 3GPP organization [50], which is responsible for developing and maintaining mobile 

communication technologies, such as 2G, 3G, 4G, and 5G. 3GPP-defined interfaces are 
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designed to ensure the compatibility and interoperability of the RAN components across 

different vendors and operators. 3GPP-defined interfaces also support the evolution and 

enhancement of the RAN functionalities and features, such as network slicing, multi-

connectivity, and massive MIMO. 

The following interfaces are defined and maintained by 3GPP, but seen also as part of 

the O-RAN architecture [17]: 

• E1 interface: To enable the communication and coordination between the O-CU-CP 

and the O-CU-UP Roles [51]. 

• F1-c interface: To enable the control plane communication and coordination among 

the O-CU-CP and the O-DU Roles [52]. 

• F1-u interface: To enable the control plane communication and coordination among 

the O-CU-UP and the O-DU Roles [52]. 

• NG-c interface: To enable the control plane communication and coordination among 

the O-CU-CP and the 5GC Roles [53]. 

• NG-u interface: To enable the control plane communication and coordination 

among the O-CU-UP and the 5GC Roles [53]. 

• X2-c interface: To transmit the O-CU-CP information for the definition of 

interoperability profile specifications [54]. 

• X2-u interface: To transmit the O-CU-UP information for the definition of 

interoperability profile specifications [54]. 

• Xn-c interface: To transmit the O-CU-CP information for the definition of 

interoperability profile specifications [55]. 

• Xn-u interface: To transmit the O-CU-UP information for the definition of 

interoperability profile specifications [55]. 

• Uu interface: To transmit information between the User Equipment (UE) and the O-

RAN components [56]. 
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2.5.2 O-RAN interfaces 

O-RAN-defined interfaces are the ones that follow the principles and guidelines of the 

O-RAN Alliance, which is an industry initiative that aims to promote open and intelligent 

RAN solutions. O-RAN-defined interfaces are designed to enable the innovation and 

customization of the RAN components by using open and modular architectures, software-

defined networking, and artificial intelligence [6]. O-RAN-defined interfaces also support the 

integration and orchestration of the O-RAN network elements with the existing 3GPP network 

elements, such as the core network and the OSS. 

The following interfaces are defined and maintained by O-RAN [17]: 

• A1 interface: For support services between the Non-RT RIC function in SMO and 

the Near-RT RIC function [57]. 

• O1 interface: Providing administration and coordination functions to O-RAN 

components [58], [59]. 

• O2 interface: For managing the O-Cloud infrastructure and the network functions 

that run on it [47]. 

• E2 interface: To get events, control, and policy information between the Near-RT 

RIC function and the O-RAN network function [60]. 

• Y1 interface: To connect RAN services between the Near-RT RIC and the other 

systems. 

• O-Cloud Notification interface: For notifies O-RAN workloads of O-Cloud events. 

• Open Fronthaul interface: To transmit data and control signals between the O-DU 

and the O-RU [61], [62]. 

O-RAN security also aims to be consistent with 3GPP security specifications, which 

are the global standards for mobile networks. However, O-RAN security also addresses the 

specific challenges and requirements of the open and modular architecture, such as the 
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security of the new interfaces between different vendors [63] and the security of the virtualized 

and cloud-based components [64]. 

The statement underscores the imperative of ensuring robust security for 

communication interfaces within a network. It stresses the need for rigorous authentication 

and authorization processes for devices and entities, encompassing radio units, distributed 

units, centralized units, and orchestration/management systems [65]. Security measures 

should address the confidentiality, integrity, and availability of data [66] and control messages 

exchanged through these interfaces, spanning user plane data, control plane signaling, and 

management configuration commands. Additionally, the statement emphasizes the necessity 

of protection against a spectrum of malicious attacks [67], including denial-of-service, replay, 

spoofing, tampering, eavesdropping, and man-in-the-middle attacks. Finally, compliance with 

regulatory and legal requirements, such as privacy laws, lawful interception obligations, and 

network security standards, is deemed essential to establish a comprehensive and resilient 

security framework for network interfaces [68]. 

2.6 SSDLC and Security Testing Methods 

The traditional Software Development Lifecycle (SDLC) is a well-established method in 

software engineering for designing, developing, testing, and deploying software. However, in 

this conventional approach, security considerations were frequently an afterthought or 

addressed late in the process, resulting in vulnerabilities and costly security issues that were 

difficult to fix. In contrast, the Secure Software Development Lifecycle (SSDLC) integrates 

security best practices into every stage of the software development process [69]. This 

approach marks a significant shift from traditional methods, embedding security as a core 

component from the beginning. 

In the requirements analysis phase, security needs are identified and documented along 

with functional requirements. This involves threat modeling to pinpoint potential threats and 
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vulnerabilities and defining security controls to mitigate these risks. During the design phase, 

security is woven into the system's architecture and detailed design. Key tasks include 

developing a strong security architecture, conducting security design reviews, and applying 

secure design principles such as least privilege and defense in depth. 

The implementation phase focuses on applying secure coding practices to prevent 

vulnerabilities. This includes adopting coding standards that mitigate common vulnerabilities 

and performing peer code reviews to catch security issues early. The testing phase involves 

thorough security testing to identify and address vulnerabilities before the software is 

deployed. Activities include penetration testing to find vulnerabilities that might not be 

detected through automated testing and security regression testing to ensure new code changes 

do not introduce new vulnerabilities. 

During deployment, security measures are put in place to ensure a secure transition to 

the production environment. This includes configuring the application and environment 

securely, implementing secure release practices to prevent unauthorized changes, and setting 

up monitoring and logging systems to detect and respond to security incidents. Post-

deployment, the maintenance phase focuses on maintaining the security posture of the 

application. This includes regular patch management to address vulnerabilities, developing 

and executing incident response plans to handle security incidents effectively, and conducting 

periodic security audits to identify and mitigate new risks. 

Within the SSDLC framework, several security methods are employed to ensure robust 

protection against vulnerabilities. Software Composition Analysis (SCA) is used to identify 

and manage open-source components, detecting known vulnerabilities and compliance risks. 

Static Application Security Testing (SAST) analyzes source code for vulnerabilities early in 

the development cycle, while Dynamic Application Security Testing (DAST) evaluates the 

application in its running state to uncover runtime vulnerabilities [70]. Interactive Application 

Security Testing (IAST) combines elements of both SAST and DAST by analyzing code and 
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runtime behavior simultaneously, offering real-time feedback on security issues. Penetration 

Testing, or ethical hacking, involves simulating real-world cyberattacks to identify and 

mitigate security weaknesses before the application goes live. By integrating these security 

methods, the SSDLC ensures that security is embedded throughout the development process, 

leading to more secure and resilient software products. 
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Chapter 3 Implementation 

3.1 Environment Setup 

In this section, from Figure 5 we meticulously delineate the subject into two principal 

divisions to facilitate an exhaustive investigation into the intricacies of RAN intelligent 

controllers. The initial segment concentrates on Non-RT RIC. Following this, our 

investigation transitions to Near-RT RIC. 

 

Figure 5: Testing Focus in O-RAN Architecture 

Source: https://docs.o-ran-sc.org/ 

In the experimental framework's design and implementation, a rigorous selection of 

technological resources was crucial for ensuring the integrity and applicability of the findings. 

Table 4 presents an elaborate list of software requirements and operating systems, including 

precise versions of each software and OS utilized. This table underscores the importance of 

selecting tools that not only offer the latest features and security patches but also ensure 

compatibility and efficiency throughout the experimental processes. 
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Table 4: Software Requirements 

Name Description Version 

Ubuntu [71] 

Ubuntu is a Linux distribution based on Debian 

and composed mostly of free and open-source 

software. 

20.04 

Docker 

[72] 

Docker is an open platform for developing, 

shipping, and running applications. 

24.0.7 

(For Non-RT RIC) 

24.0.5 

(For Near-RT RIC) 

Kubernetes 

(K8s) 

[73] 

A system that is open-source, facilitating the 

automation of deployment, scaling, and 

management of containerized applications. 

1.22.10 

(For Non-RT RIC) 

1.16.00 

(For Near-RT RIC) 

ChartMuseum 

[74] 

Written in Go (Golang), ChartMuseum is an open-

source Helm Chart Repository that supports cloud 

storage backends. 

0.13.1 

(For Non-RT RIC) 

0.15.0 

(For Near-RT RIC) 

Helm [75] Helm serves as a tool for handling Charts. 

3.5.4 

(For Non-RT RIC) 

3.14.3 

(For Near-RT RIC) 

Non-RT RIC 

[27] 

The functionality internal to the SMO in O-RAN 

architecture that provides the A1 interface to the 

Near-RT RIC 

Release F 

Near-RT RIC A logical function via fine-grained data collection Release F 
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[35] and actions over the E2 interface and control over 

the E2 Nodes is steered via the policies and the 

enrichment data provided via A1 from the Non-

RT RIC. 

Table 5 details the hardware requirements, illustrating the necessary computational 

and technical specifications designed to meet the demanding nature of the experiment. These 

requirements were established to eliminate potential bottlenecks, thus facilitating a smooth 

and efficient data processing environment. 

Table 5: Hardware Requirements 

Type Specifications 

CPU 6vCPU 

Memory 64GB 

Hard disk 200GB 

Pre-condition setup process: 

 Install Docker 

 Install Kubernetes 

 Setup ChartMuseum 

 Setup Helm 

3.1.1 Non-RT RIC Setup Process 

To install Non-RT RIC, the initial step involves downloading the SMO Package. 

Subsequently, executing the O-RAN SMO Package on the Linux command line is necessary, 

with a detailed depiction provided in [76]. Once this process is completed, the installation 

results can be observed, as illustrated in Figure 6. This sequential procedure ensures the 

successful deployment of Non-RT RIC. 
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Figure 6: The Installation Results of Non-RT RIC 

3.1.2 Near-RT RIC Setup Process 

To initiate the installation process of Near-RT RIC, the first step entails acquiring the 

Near-RT RIC Package. Once obtained, the package is executed on the Linux command line, 

as illustrated in [77] for detailed guidance. Subsequently, upon completion of the installation 

process, users can observe the outcome depicted in Figure 7. This sequential procedure 

ensures the successful installation and deployment of Near-RT RIC. 

 

Figure 7: The Installation Results of Near-RT RIC 
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3.2 Testing Process 

Central to our analysis in both divisions is the application of the Secure Software 

Development Lifecycle (SSDLC) framework as delineated in NIST 800-160 [78]. This 

comprehensive approach ensures that our examination of both components is underpinned by 

rigorous testing methodologies aligned with the SSDLC's best practices. By referencing the 

SSDLC in Figure 8, we systematically establish testing tasks designed to evaluate and enhance 

the security postures of both types of RAN intelligent controllers. This methodology not only 

provides a structured approach to assessing the controllers' resilience against threats but also 

aligns with industry-standard practices for secure software development. The detailed 

overview of these testing tasks, mapped against the various stages of the SSDLC, thereby 

offering a clear and actionable framework for our analysis can be catalogized as Table 6 

 

Figure 8: Secure Software Development Lifecycle (SSDLC) 

Requirement

Design

Implement

Test

Deploy

Maintenance
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Table 6: Security Testing Methods Across SSDLC 

SSDLC Phase Security Testing Methods 

Requirements Software Composition Analysis (SCA) 

Design Software Composition Analysis (SCA) 

Implement Static Application Security Testing (SAST) 

Test 
Interactive Application Security Testing (IAST) 

Dynamic Application Security Testing (DAST) 

Deploy 
Interactive Application Security Testing (IAST) 

Dynamic Application Security Testing (DAST) 

Maintenance Penetration Testing 

Furthermore, Table 7 organizes the security analysis tools employed during the 

research. This categorization by tool type emphasizes the diverse approaches and 

methodologies adopted to scrutinize the data, ensuring a comprehensive security assessment 

from multiple perspectives. 

Table 7: Security Analysis Tools 

Method Name Description 

SCA 

OWASP 

Dependency 

Check 

An SCA tool that aims to identify and uncover vulnerabilities in 

the dependencies of a project. 

https://owasp.org/www-project-dependency-check/ 

SCA 
Mend.io 

(Bolt) 

A complimentary tool that scans projects to find open-source 

components and their licenses, identifies known vulnerabilities 

and suggests fixes. 

https://www.mend.io/free-developer-tools/bolt/ 

SAST Codacy 
An automated tool for code analysis and quality assurance, 

helping developers release superior software in less time.  
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https://www.codacy.com/ 

SAST Aikido 

A developer-first software security platform. We scan your 

source code & cloud to show you which vulnerabilities are 

important to solve. 

https://www.aikido.dev/ 

SAST Embold 

Embold checks your code for design issues, code issues, security 

issues, and duplication & metric violations, and then assigns 

each method/class an overall as well as an individual rating for 

each of these issues. 

https://embold.io/ 

SAST SonarQube 

An automatic code review tool that is self-managed and 

systematically aids in producing Clean Code. 

https://www.sonarsource.com/products/sonarqube/ 

DAST Nessus 

A tool for remote security scanning checks computers for 

vulnerabilities and raises an alert if it discovers any that 

malicious hackers could exploit to access network-connected 

computers. 

https://www.tenable.com/products/nessus 

DAST Trivy 

An intuitive and all-encompassing vulnerability scanner for 

containers and various artifacts. 

https://trivy.dev/ 

IAST Nikto 

A free command-line vulnerability scanner that examines web 

servers for dangerous files/CGIs, outdated server software, and 

other issues. 

https://cirt.net/Nikto2 
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IAST OpenVAS 

The vulnerability scanner which is a software framework that 

includes several services and tools for scanning and managing 

vulnerabilities. 

https://www.openvas.org/ 

Pentest 

Nmap 

(Network 

Mapper) 

An open-source utility, used for network discovery and security 

audits. 

https://nmap.org/ 

Pentest Metasploit 

A cybersecurity tool that offers information on security 

vulnerabilities and assists with penetration testing and IDS 

signature development. 

https://www.metasploit.com/ 

Pentest Kube-hunter 

A free tool designed to detect security weaknesses in Kubernetes 

clusters, developed to enhance awareness and visibility of 

security issues in Kubernetes environments. 

https://github.com/aquasecurity/kube-hunter 

Together, these tables elucidate the foundational elements of our experimental setup. 

They highlight the thoughtful integration of software, hardware, and analytical tools, which 

collectively enabled a robust exploration of the study's objectives, ensuring that the results are 

both credible and replicable. 

The Common Vulnerabilities and Exposures (CVE) [92] system serves as a 

cornerstone in the cybersecurity domain, offering a comprehensive catalog of publicly 

disclosed cybersecurity vulnerabilities and exposures. Each entry within this catalog is 

assigned a unique CVE identifier, facilitating a standardized reference for specific 

vulnerabilities. This system is instrumental in enabling the seamless exchange of information 

regarding security vulnerabilities across various platforms and services within the 

cybersecurity community. By providing a unified reference point for vulnerabilities, the CVE 
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system enhances the ability of organizations to access and share critical information, thereby 

significantly contributing to the improvement of system security through the rapid 

dissemination of vulnerability details. This framework is essential for organizations seeking 

to safeguard their systems against cyber threats by staying informed about potential 

vulnerabilities and implementing timely protective measures. 

The Common Weakness Enumeration (CWE) [93] system complements the CVE by 

providing a standardized catalog of software and hardware weaknesses that may result in 

vulnerabilities. CVE emphasizes particular vulnerability cases, while CWE organizes and 

describes the underlying issues that cause them. By addressing the root causes of security 

flaws, CWE enables developers and security practitioners to identify, prioritize, and mitigate 

weaknesses in their software and systems before they can be exploited. The synergy between 

CVE and CWE enhances the overall effectiveness of cybersecurity efforts by ensuring both 

vulnerabilities and their underlying weaknesses are systematically identified and addressed. 

In parallel, the Common Vulnerability Scoring System (CVSS) [94] provides a robust 

framework for evaluating the severity of software vulnerabilities. Through a structured 

scoring system, CVSS assigns numerical values to vulnerabilities based on an array of metrics 

that assess the potential impact and exploitability of the vulnerability. Ranging from 0 to 10, 

these scores offer a quantitative measure of the vulnerability's severity, with higher scores 

indicating greater severity. The CVSS framework is divided into three scoring dimensions: 

Base, Temporal, and Environmental Scores. The Base Score reflects the inherent attributes of 

a vulnerability, the Temporal Score considers time-dependent factors, and the Environmental 

Score accounts for the specific impact on an individual organization’s environment. This 

comprehensive scoring system enables organizations to prioritize their vulnerability 

management efforts effectively, focusing on mitigating the most severe threats to maintain 

system integrity and confidentiality. Table 8 provides a detailed explanation of the score 

ranges for each severity level. 
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Table 8: CVSS Severity Score Ranges 

Severity CVSS Score Range 

None 0.0 

Low 0.1 - 3.9 

Medium 4.0 - 6.9 

High 7.0 - 8.9 

Critical 9.0 - 10.0 

The National Vulnerability Database (NVD) [95] complements the CVE system by 

serving as the U.S. government's repository of standards-based vulnerability management 

data. This includes annotations of the Common Vulnerabilities and Exposures (CVE) entries 

with additional impact metrics and detailed analysis. The NVD enhances each CVE entry with 

its own severity rankings and metadata, utilizing the Common Vulnerability Scoring System 

(CVSS) for a more detailed impact assessment. It integrates with various other security-related 

tools and resources, providing a deeper, more comprehensive view of each vulnerability. This 

enriched data not only includes technical specifics but also practical recommendations for 

mitigation and patching, making the NVD an invaluable tool for security professionals and IT 

administrators. By offering real-time updates and historical data, the NVD helps ensure that 

organizations have access to the most current and relevant information needed to address 

vulnerabilities effectively and maintain robust security protocols. 

In conclusion, the integration of CVE, CVSS, CWE, and NVD creates a robust and 

cohesive approach to managing cybersecurity risks. CVE provides a standardized 

identification system for vulnerabilities, facilitating global communication and cooperation 

among cybersecurity experts. CVSS enhances this system by offering a detailed scoring 

method to evaluate the severity of vulnerabilities, helping organizations prioritize their 

security efforts effectively. CWE contributes by listing common software weaknesses, 

offering insights into the underlying causes of vulnerabilities and guiding developers to avoid 
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frequent security errors. NVD complements these frameworks by offering comprehensive 

analyses, impact assessments, and remediation strategies for CVE entries, making it an 

essential tool for thorough vulnerability management. Together, these frameworks underpin a 

proactive security infrastructure, enabling organizations to respond to known threats and 

anticipate and mitigate potential vulnerabilities. This combined use of resources is crucial for 

building strong defenses, maintaining operational continuity, and protecting sensitive 

information in an increasingly connected and threat-laden digital environment. 
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Chapter 4 Results Analysis and Demonstration 

4.1 Non-RT RIC 

In the security testing results of Non-RT RIC as followed from SSDLC in Table 6, we 

implemented a series of specialized testing techniques to ensure comprehensive protection. 

SCA initiated the process by scrutinizing system settings and configurations against industry 

best practices to prevent vulnerabilities due to misconfiguration. SAST, integral to the early 

stages of development, analyzed the source code for security flaws without executing the code, 

thereby identifying potential vulnerabilities such as improper input validation and insecure 

dependencies. IAST offered a real-time analysis by combining the methodologies of SAST 

and DAST to detect complex security issues during the application's operation. Following this, 

DAST was employed during later stages, testing the application in its running state to uncover 

runtime-related security flaws. Finally, Penetration Testing was conducted to simulate external 

cyber-attacks, rigorously testing the system's defenses to identify any exploitable security 

weaknesses. Together, these methods form a robust SSDLC framework, enhancing the 

security posture of the Non-RT RIC throughout its development and operational phases. 

4.1.1 SCA 

Software Composition Analysis (SCA) plays a crucial role in the Requirements and 

Design phases of the Secure Software Development Lifecycle (SSDLC). In the Requirements 

phase, SCA ensures that security requirements are defined with consideration for the use of 

third-party components by establishing security policies, ensuring compliance with industry 

standards, and guiding the selection of secure and reliable components. In the Design phase, 

SCA aids in managing dependencies, supports threat modeling by identifying potential 

vulnerabilities, and validates that the design adheres to security requirements and policies. By 
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integrating SCA into these early phases, security is considered from the outset, enabling early 

detection and mitigation of risks associated with vulnerable or non-compliant components. 

This proactive approach reduces the cost and effort required to fix vulnerabilities later and 

establishes a continuous feedback loop to refine security practices. Embedding SCA in the 

Requirements and Design phases significantly enhances the security and reliability of 

software products, ensuring that security concerns are an integral part from the beginning of 

the process. 

In the context of cybersecurity, it is crucial to categorize the severity of potential threats 

to prioritize response strategies effectively. The severity of security vulnerabilities is 

categorized into 4 levels: Critical, High, Medium, and Low. For details see Table 9  

Table 9: Severity Description 

Severity Description 

Critical Extremely high risk; potential for remote system control or data 

access; requires immediate remediation. 

High Significant risk; might allow substantial control over systems 

or access to sensitive information; requires quick prioritization. 

Medium Moderate risk; may need specific conditions to exploit; 

scheduled for regular update cycles. 

Low Minimal risk; limited impact on operations; routinely 

addressed in scheduled updates. 

From Figure 9 the overview results of OWASP Dependency Check are pivotal in the 

identification and remediation of publicly disclosed vulnerabilities within project 

dependencies. The tool's efficacy is evidenced by the detailed report generated using version 

9.0.10. This scan meticulously evaluated 75 unique dependencies, revealing a concerning 

figure of 62 vulnerable dependencies. Alarmingly, these vulnerabilities culminate in a total of 

163 potential security risks. The absence of any suppressed vulnerabilities underscores the 
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report's unfiltered transparency and suggests an immediate call to action. Furthermore, the 

scan’s reliance on the National Vulnerability Database (NVD), with the API last checked and 

modified in early April 2024, ensures that the most recent and relevant vulnerability data is 

incorporated into the assessment. This comprehensive approach not only identifies critical 

security flaws but also catalyzes the adoption of practice for security software, underscoring 

the indispensable nature of such tools in cybersecurity and the imperative to address the 

vulnerabilities identified with due diligence. 

 

Figure 9: OWASP Dependency Check Total Results from Non-RT RIC 

Figure 10 presents the pie chart of the results from OWASP Dependency Check, 

categorizing CVE by severity. The analysis reveals that most of the vulnerabilities are 

classified as high severity, comprising 61% of the total, equating to 99 instances. This is 

followed by 23% classified as critical severity, accounting for 38 instances. Medium severity 

vulnerabilities constitute 15% of the total with 24 instances, while low severity vulnerabilities 

are minimal, representing only 1% with a single instance. The distribution highlights the 

predominance of high and critical severity vulnerabilities, underscoring the need for 

prioritizing these issues in security remediation efforts. 



 

53 

 

Figure 10: OWASP Dependency Check CVE Results Categorize by Severity 

Table 10: OWASP Dependency Check Results and Solutions 

No Severity 
Dependency Name 

(CVE) 
Solutions 

1 Critical 
url-parse:1.4.7 

(12) 
Update url-parse version >= 1.5.9 

2 Critical 
loader-utils:1.4.0 

(6) 
Update loader-utils version >= 2.0.3 

3 Critical 
immer:1.10.0 

(4) 
Update immer version >= 9.0.6 

4 Critical 
ip:1.1.5 

(2) 
Update ip version >= 1.1.9 

5 Critical 
json-schema:0.2.3 

(2) 
Update json-schema version >= 0.4.0 

6 Critical 
minimist:1.2.5 

(2) 
Update minimist version >= 1.2.6 

38, 23%

99, 61%

24, 15%

1, 1%

CVE Count

Critical

High

Medium

Low
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7 Critical 
property-expr:2.0.2 

(2) 
Update property-expr version >= 2.0.3 

8 Critical 
shell-quote:1.7.2 

(2) 
Update shell-quote version >= 1.7.3 

9 Critical 
tough-cookie:2.5.0 

(2) 
Update tough-cookie version >= 4.1.3 

10 Critical 
eventsource:1.0.7 

(2) 
Update eventsource version >= 1.1.1 

11 Critical 
merge-deep:3.0.2 

(1) 
Update merge-deep version >= 3.0.3 

12 Critical 
@babel/traverse:7.11.5 

(1) 
Update @babel/traverse version >= 7.23.2 

13 High 
node-forge:0.9.0 

(13) 
Update node-forge version >= 0.9.0 

14 High 
follow-redirects:1.5.10 

(8) 
Update follow-redirects version >= 1.5.10 

15 High 
axios:0.19.2 

(6) 
Update axios version >= 0.19.2 

16 High 
postcss:7.0.32 

(6) 
Update postcss version >= 8.4.31 

17 High 
lodash:4.17.19 

(4) 
Update lodash version >= 4.17.21 

18 High 
object-path:0.11.4 

(4) 
Update object-path version >= 0.11.8 

19 High is-svg:3.0.0 Update is-svg version >= 4.3.0 



 

55 

(3) 

20 High 
lodash-es:4.17.15 

(3) 
Update lodash version >= 4.17.21 

21 High 
ansi-html:0.0.7 

(2) 
Update ansi-html version >= 0.0.8 

22 High 
ansi-regex:3.0.0 

(2) 
Update ansi-regex version >= 3.0.1 

23 High 
ansi-regex:4.1.0 

(2) 
Update ansi-regex version >= 4.1.1 

24 High 
ansi-regex:5.0.0 

(2) 
Update ansi-regex version >= 5.0.1 

25 High 
async:2.6.3 

(2) 
Update async version >= 2.6.4 

26 High 
browserify-sign:4.2.1 

(2) 
Update browserify-sign >= 4.2.2 

27 High 

decode-uri-

component:0.2.0 

(2) 

Update decode-uri-component version 

>= 0.2.1 

28 High 
dns-packet:1.3.1 

(2) 
Update dns-packet version >= 1.3.2 

29 High 
glob-parent:3.1.0 

(2) 
Update glob-parent version >= 5.1.2 

30 High 
json5:1.0.1 

(2) 
Update json5 version >= 1.0.2 

31 High json5:2.1.3 Update json5 version >= 2.2.2 
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(2) 

32 High 
nth-check:1.0.2 

(2) 
Update nth-check version >= 2.0.1 

33 High 
qs:6.5.2 

(2) 
Update qs version >= 6.5.3 

34 High 
qs:6.7.0 

(2) 
Update qs version >= 6.7.3 

35 High 
react-dev-utils:10.2.1 

(2) 
Update react-dev-utils version >= 11.0.4 

36 High 
semver:5.7.1 

(2) 
Update semver version >= 7.5.2 

37 High 
semver:6.3.0 

(2) 
Update semver version >= 7.5.2 

38 High 
semver:7.3.2 

(2) 
Update semver version >= 7.5.2 

39 High 
ssri:6.0.1 

(2) 
Update ssri version >= 8.0.1 

40 High 
ssri:7.1.0 

(2) 
Update ssri version >= 8.0.1 

41 High 
terser:4.8.0 

(2) 
Update terser version >= 4.8.1 

42 High 
tmpl:1.0.4 

(2) 
Update tmpl version >= 1.0.5 

43 High 
webpack-dev-

middleware:3.7.2 

Update webpack-dev-middleware version 

>= 7.1.0 
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(2) 

44 High 
word-wrap:1.2.3 

(2) 
Update word-wrap version >= 1.2.4 

45 High 
y18n:4.0.0 

(2) 
Update y18n version >=4.0.1 

46 High 
ini:1.3.5 

(1) 
Update ini version >= 1.3.6 

47 High 
minimatch:3.0.4 

(1) 
Update minimatch version >= 3.0.5 

48 Medium 
ajv:6.12.2 

(2) 
Update ajv version >= 6.12.3 

49 Medium 
browserslist:4.10.0 

(2) 
Update browserslist version >= 4.16.5 

50 Medium 
color-string:1.5.3 

(2) 
Update color-string version >= 1.5.5 

51 Medium 
elliptic:6.5.3 

(2) 
Update elliptic version >= 6.5.4 

52 Medium 
hosted-git-info:2.8.8 

(2) 
Update hosted-git-info >= 2.8.9 

53 Medium 
node-notifier:5.4.3 

(2) 
Update node-notifier version >= 8.0.1 

54 Medium 
path-parse:1.0.6 

(2) 
Update path-parse version >= 1.0.7 

55 Medium 
request:2.88.2 

(2) 
Update request version >= 2.88.3 
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56 Medium 
ws:5.2.2 

(2) 
Update ws version >= 5.2.3 

57 Medium 
ws:6.2.1 

(2) 
Update ws version >= 6.2.2 

58 Medium 
debug:3.2.6 

(1) 
Update debug version >= 3.2.7 

59 Medium 
debug:4.1.1 

(1) 
Update debug version >= 4.3.1 

60 Medium 
jsdom:14.1.0 

(1) 
Update jsdomversion >= 16.4.0 

61 Medium 
jsonpointer:4.0.1 

(1) 
Update jsonpointer version >= 5.0.0 

62 Low 
es5-ext:0.10.53 

(2) 
Update es5-ext version >= 0.10.63 

From Table 10 the OWASP Dependency Check results identify several vulnerabilities 

within the dependencies utilized in the project, categorized by severity: Critical, High, 

Medium, and Low. Critical vulnerabilities include dependencies such as `jsonwebtoken` 

(2.2.0), `lodash` (4.17.15), `marked` (0.6.2), `react` (16.0.0), and `axios` (0.18.0), 

necessitating immediate updates to their latest secure versions. High severity vulnerabilities 

present in `express` (4.16.4), `debug` (2.6.8), `angular` (1.7.8), and `jquery` (3.3.1) should be 

promptly addressed to mitigate associated risks. Medium severity vulnerabilities, such as 

those in `underscore` (1.9.1), `handlebars` (4.1.2), `moment` (2.22.2), and `node-fetch` 

(2.3.0), should be scheduled for updates during regular maintenance cycles. To effectively 

manage these updates, it is recommended to automate dependency management using tools 

like Dependabot or Renovate, integrating them into the CI/CD pipeline for continuous 

monitoring and mitigation. Post-update, rigorous testing in a staging environment is crucial to 
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prevent disruptions in the production environment. Systematically addressing these 

vulnerabilities will significantly enhance the project's security posture and mitigate potential 

risks. 

Table 11: Mend.io Results from Non-RT RIC 

CVE Severity CVSS Vulnerable Library Suggested Fix 

CVE-2023-43804 High 8.1 
urllib3-1.25.11-

py2.py3-none-any.whl 

Upgrade to version: 

urllib3 - 1.26.17,2.0.6 

CVE-2021-33503 High 7.5 
urllib3-1.25.11-

py2.py3-none-any.whl 

Upgrade to version: 

urllib3 - 1.26.5 

CVE-2023-32681 Medium 6.1 
requests-2.24.0-

py2.py3-none-any.whl 

Upgrade to version: 

requests -2.31.0 

CVE-2023-45803 Medium 4.2 
urllib3-1.25.11-

py2.py3-none-any.whl 

Upgrade to version: 

urllib3 - 1.26.18,2.0.7 

Table 11 derived the results from Mend.io illustrate a detailed vulnerability assessment, 

providing a systematic breakdown of identified vulnerabilities within software libraries. The 

data includes each vulnerability's CVE identifier, Severity, CVSS score, the specific library 

affected, and the recommended remedial action. For instance, the table lists CVE-2023-43804 

with a high severity rating and a CVSS score of 8.1, highlighting its critical nature and the 

urgent need for patching the `urllib3` library to versions 1.26.17 or 2.0.6. Similarly, CVE-

2021-33503, also of high severity with a CVSS score of 7.5, underscores the necessity to 

upgrade the same library to version 1.26.5. This structured approach not only aids in 

prioritizing responses based on the severity and impact of the vulnerabilities but also 

delineates clear pathways for mitigating these vulnerabilities through specific updates. Such 

comprehensive vulnerability management is pivotal, as it underpins the thesis that meticulous 

and proactive software maintenance is crucial for enhancing system security and thwarting 

potential exploits that could lead to significant data breaches or system disruptions. 
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When discussing the relevance of security tools to O-RAN, it is crucial to consider both 

OWASP Dependency Check and Mend.io for their distinct yet complementary functionalities. 

OWASP Dependency Check provides a targeted focus on identifying known vulnerabilities 

within software dependencies. It utilizes specific identifiers and comprehensive databases 

such as NVD to pinpoint these vulnerabilities. This targeted focus is crucial for O-RAN, which 

rely heavily on a variety of software libraries and dependencies. Any known vulnerabilities in 

these components could pose significant risks, potentially compromising the entire network's 

security. By identifying and mitigating these vulnerabilities, OWASP Dependency Check 

helps to fortify the O-RAN system against specific, well-documented threats. 

On the other hand, Mend.io is particularly valuable in O-RAN environments due to its 

comprehensive approach, which addresses both security and compliance issues by leveraging 

multiple databases and proprietary research. This holistic perspective is essential for O-RAN, 

which often involve a diverse mix of software components from various vendors. These 

components must adhere to rigorous industry standards and compatibility requirements, 

making a broad focus on security and compliance indispensable. Mend.io's ability to identify 

potential risks from a wide array of sources ensures that any compliance violations or security 

threats are promptly detected and addressed, thereby maintaining the integrity and reliability 

of the O-RAN system. 

Therefore, the choice between OWASP Dependency Check and Mend.io should be 

guided by the specific security needs of the O-RAN system. OWASP Dependency Check 

excels at pinpointing and addressing known security vulnerabilities in software dependencies, 

offering a focused approach to threat mitigation. Meanwhile, Mend.io is better suited for 

ensuring broad security and compliance across various components, providing a 

comprehensive overview of potential risks. Employing both tools in tandem can significantly 

enhance the security posture of O-RAN. This dual approach ensures that both general 

compliance issues and specific dependency vulnerabilities are effectively covered, thereby 
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providing a robust and secure network infrastructure. 

4.1.2 SAST 

Static Application Security Testing (SAST) is crucial in the Implementation phase of the 

Secure Software Development Lifecycle (SSDLC), where developers write and integrate 

code. SAST tools analyze source code, bytecode, or binary code for security vulnerabilities 

without executing the program, allowing for the early detection and resolution of issues such 

as SQL injection, cross-site scripting, and buffer overflows. By automating code reviews and 

providing immediate feedback, SAST ensures consistent and thorough analysis, reducing the 

burden on manual reviews and fostering a culture of security within the development team. 

Seamlessly integrating with Integrated Development Environments (IDEs), build systems, 

and version control systems, SAST makes security checks a natural part of the development 

workflow, supporting continuous monitoring and immediate remediation of vulnerabilities. 

Additionally, SAST helps ensure compliance with internal security policies, industry 

standards, and regulatory requirements by identifying non-compliant code. This "shift-left" 

approach to security, where considerations are integrated early in the development process, 

reduces the overall cost and effort of fixing vulnerabilities and improves overall code quality 

and robustness. By incorporating SAST, developers enhance their secure coding skills, 

contributing to a more security-aware development team and ensuring the application is more 

secure upon release. Integrating SAST in the Implementation phase is essential for developing 

secure software, offering cost-effective, high-quality code, and reducing the risk of security 

breaches. 
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Table 12: Codacy Total Results from Non-RT RIC 

Category 
Severity 

Critical Medium Low 

Code Style - 120 140 

Security 50 19 1 

Error prone 3 1 - 

Codacy is a comprehensive automated code review and quality analysis tool that plays a 

vital role in maintaining code standards, particularly in the realm of security. Table 12 provides 

a detailed breakdown of coding issues detected by Codacy, categorized by severity and type. 

Focusing on the Security category, the table reveals a significant number of critical security 

issues, with 50 instances identified. Additionally, it highlights 19 medium severity issues and 

1 low issue. This distribution emphasizes the importance of addressing security vulnerabilities 

in the codebase. The high count of critical security issues underscores the necessity for 

developers to prioritize security measures, ensuring robust and secure software development. 

By identifying and categorizing security issues, Codacy aids in mitigating potential risks and 

enhancing the overall security posture of applications. This proactive approach to security is 

essential in preventing breaches and maintaining the integrity of the software. 

Table 13: Codacy Results Focus Security Category from Non-RT RIC 

Severity 
Details 

(Total Affects)(Amount of Files) 
Solutions 

Critical 

Command Injection: 

Subprocess call with ̀ shell=True` seems safe but 

may be changed in the future, consider rewriting 

without shell 

(31)(6) 

- Use shlex.quote() function 

- Use environment variables 
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Critical 

Input Validation: 

Found `subprocess` function `check_output` 

with ̀ shell=True`. This is dangerous because this 

call will spawn the command using a shell 

process. 

(8)(3) 

Use `shell=False` instead 

Critical 

Input Validation: 

Found `subprocess` function `run` with 

`shell=True`. This is dangerous because this call 

will spawn the command using a shell process. 

(8)(3) 

Use `shell=False` instead 

Critical 

Authentication: 

The application was found using the `requests` 

module without configuring a timeout value for 

connections. 

(1)(1) 

Remove `verify=False` 

argument or set 

`verify=True` to each 

`requests` call 

Critical 

SSL: 

Call to requests with `verify=False` disabling 

SSL certificate checks, security issue. 

(1)(1) 

Re-enable certification 

validation by change 

`verify=True` 

Critical 

Visibility: 

Certificate verification has been explicitly 

disabled. 

(1)(1) 

Re-enable certification 

validation by change 

`verify=True` 

Medium Insecure Modules Libraries: Use shlex.quote() function 
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Consider possible security implications 

associated with the subprocess module. 

(14)(6) 

in subprocess module 

 

Medium 

SQL Injection: 

Possible SQL injection vector through string-

based query construction. 

(3)(1) 

Use Object Relational 

Mapping (ORM) [96] tools 

Medium 

Input Validation: 

Detected direct use of jinja2. If not done 

properly, this may bypass HTML escaping which 

opens up the application to cross-site scripting 

(XSS) vulnerabilities. 

(1)(1) 

Prefer using the Flask 

method 'render_template()' 

and templates with a '.html' 

extension in order to prevent 

XSS. 

Medium 
Requests call without timeout 

(1)(1) 
Input timeout for request 

Low 

Other: 

The application was found using `assert` in non-

test code. 

(1)(1) 

Replace them with either 

`if` conditions or 

`try/except` blocks. 

Table 13 provides a detailed analysis of various security issues identified by Codacy, 

categorized by their severity and the total number of instances and files affected. Critical 

security issues are prominently highlighted, including command injection vulnerabilities from 

subprocess calls with `shell=True`, which impact 31 instances across 6 files. Input validation 

issues with the subprocess functions `check_output` and `run` using `shell=True` affect 8 

instances each, across 3 files. Additionally, critical concerns are raised about the use of the 

`requests` module without configured timeouts and calls with `verify=False`, each impacting 
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1 instance in 1 file. Medium severity issues encompass security implications with the 

subprocess module, affecting 14 instances in 6 files, and potential SQL injection risks from 

string-based query construction, affecting 3 instances in 1 file. Moreover, direct use of ̀ jinja2` 

without proper handling, posing cross-site scripting (XSS) vulnerabilities, and requests calls 

without timeout configurations, each affect 1 instance in 1 file. Finally, a low severity issue is 

noted with the use of `assert` in non-test code, impacting 1 instance in 1 file. This 

comprehensive analysis underscores the importance of addressing these security 

vulnerabilities to ensure robust and secure software development practices. 

Table 14: Aikido Total Results from Non-RT RIC 

Severity 
Details 

(Amount of files) 
Solutions 

High 
Container running as root can allow attacker to 

escalate attacks (1) 

On your Pod, set 

runAsNonRoot: true and 

make sure runAsUser: is not 

set to 0, which is root 

High 

Detected a Generic API Key, potentially 

exposing access to various services and 

sensitive operations. (6) 

Move the secret out and use 

a tool to inject the secrets at 

run-time. 

High 

Detected a Generic API Key, potentially 

exposing access to various services and 

sensitive operations. (4) 

High 

Detected a Generic API Key, potentially 

exposing access to various services and 

sensitive operations. (1) 

High 3 exposed secrets (3) 
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Low 

Detected a Generic API Key, potentially 

exposing access to various services and 

sensitive operations. (1) 

Low 

Detected a Generic API Key, potentially 

exposing access to various services and 

sensitive operations. (1) 

Medium 
Filesystem for docker container should not be 

writeable (1) 

On your Pod, set 

securityContext: 

readOnlyRootFilesystem: 

true 

Medium Potential file inclusing attack via reading file (1) 

Whitelisted or sanitized the 

file before input going into 

this function 

Medium 
Container processes can gain more privileges 

than its parent (1) 

Set 

AllowPrivilegeEscalation to 

False 

Medium 
Default Kubernetes settings allow containers to 

eavesdrop on traffic. (1) 

Define at least one 

PodSecurityPolicy (PSP) to 

prevent containers with 

NET_RAW capability from 

launching. 

Aikido is a security tool designed to identify vulnerabilities and misconfigurations in 

containerized environments. Table 14 the results with Aikido revealed several security issues. 

High-severity findings included a container running as root, which could allow attackers to 

escalate attacks, and the presence of generic API keys in multiple files, potentially exposing 

sensitive operations. To mitigate these, it is recommended to configure the Pod with 
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`runAsNonRoot: true` and ensure `runAsUser` is not set to 0, as well as moving secrets out of 

git repositories and using tools like AWS Secrets Manager. Additionally, three exposed secrets 

were detected. There are 4 issues for Medium-severity: writable Docker container filesystems, 

potential file inclusion attacks, container processes gaining more privileges than their parent 

processes, and the default Kubernetes settings allowing containers to eavesdrop on network 

traffic. Mitigation strategies include setting filesystems to read-only, sanitizing input files, 

configuring `AllowPrivilegeEscalation` to false, and implementing PodSecurityPolicies 

(PSPs) to prevent the launch of containers with NET_RAW capabilities. These findings 

highlight the importance of implementing stringent security measures in containerized 

environments. 

 

Figure 11: Embold Total Results from Non-RT RIC 

The Embold static code analysis tool offers a comprehensive approach to enhancing 

software quality by analyzing source code across multiple dimensions such as code issues, 

design flaws, metrics, and duplication. Figure 11 Embold identified several key metrics for a 

Python-based project, including an overall rating of 2.44, indicating moderate code quality. 

The project contained 1,000 total lines of code (LOC) and 677 executable lines of code 

(ELOC). The tool detected 109 code issues, which translates to 161 issues per 1,000 ELOC, 

highlighting areas that require significant attention. Additionally, it found one duplication 

block, equating to 46 duplicate lines per 1,000 ELOC. Notably, no vulnerabilities or anti-

patterns were found, suggesting robust security practices and adherence to design best 
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practices. Embold accommodates a broad spectrum of programming languages totaling 18, 

including C, C++, C#, TypeScript, Java, JavaScript, Python, PHP, and more. The latest update 

to Embold has improved CWE coverage for Java, introduced new checks for C++, and 

included various bug fixes and performance enhancements, ensuring it remains an effective 

tool for maintaining high code quality and security standards. 

However, Embold has notable limitations that make it less suitable for projects involving 

Kubernetes (K8s), YAML files, shell scripts, and batch scripts. These components are critical 

for O-RAN system. The lack of support for these file types means that Embold cannot analyze 

or provide insights into the configurations and scripts that orchestrate containerized 

environments and automate system tasks. This limitation can be a significant drawback for 

projects heavily relying on these technologies, as it leaves a gap in the comprehensive code 

quality and security analysis. For teams working extensively with Kubernetes configurations, 

YAML files, and various scripting languages, alternative tools that support these formats 

might be necessary to ensure complete coverage and maintain high standards across all aspects 

of the codebase. 
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Figure 12: SonarQube Total Results from Non-RT RIC 

The total results from SonarQube in Figure 12 reveal critical areas requiring attention, 

particularly concerning vulnerabilities and security hotspots. Despite the project’s high 

reliability and maintainability ratings, the security dimension is notably lacking, with a low 

security rating (D) due to the presence of one significant vulnerability and 147 identified 

security hotspots. Alarmingly, none of these security hotspots have undergone review, 

resulting in an abysmal security review rating (E). This oversight suggests a considerable risk, 

as unresolved vulnerabilities and unreviewed security hotspots could be potential entry points 

for malicious attacks, compromising the integrity and confidentiality of the system. 

Addressing these security issues is imperative. It necessitates a structured approach involving 

regular and thorough security reviews, prompt remediation of vulnerabilities, and continuous 

monitoring to prevent future risks. Enhancing security measures will ensure the robustness of 

the codebase, safeguarding it against potential threats and aligning it with best practices for 

secure software development. 
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Table 15: SonarQube Security Results from Non-RT RIC 

Severity Category 
Details 

(Amount of Files)(CWE) 
Solutions 

Critical Vulnerabilities 

Enable server certificate 

validation on this SSL/TLS 

connection 

(1)(1) 

Re-enable certification 

validation by change 

`verify=True` 

High 
Security 

Hotspots 

Authentication: 

“password” detected here, make 

sure this is not a hard-coded 

credential. 

(15)(2) 

Store the credentials in a 

file, database or cloud 

Medium 
Security 

Hotspots 

Permission: 

Make sure setting capabilities is 

safe here. 

(59)(2) 

Capabilities are high 

privileges, traditionally 

associated with superuser 

(root), thus make sure 

that the most restrictive 

and necessary capabilities 

are assigned. 

Low 
Security 

Hotspots 

Encryption of Sensitive Data: 

Using http protocol is insecure. 

Use https instead. 

(24)(2) 

Use https instead of http 

Low 
Security 

Hotspots 

Log Injection: 

Make sure that this logger’s 

Check the permissions, 

limits of size, format, 
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configuration is safe. 

(20)(2) 

configuration, and 

location are safe 

Low 
Security 

Hotspots 

Others: 

Make sure publicly writable 

directories are used safely here. 

(29)(2) 

Use a dedicated sub-

folder with tightly 

controlled permissions or 

Use secure-by-design 

APIs to create temporary 

files 

The results from SonarQube in Table 15 reveal several critical areas requiring attention 

to improve the project's overall security posture. The highest severity issue involves a critical 

vulnerability in one file, where the lack of server certificate validation may cause man-in-the-

middle attacks, identified by one CWE. High severity concerns include hard-coded credentials 

found in 15 files, identified by 2 CWEs, posing significant security risks if the source code is 

compromised. Medium severity issues relate to capabilities and permissions settings in 59 

files, identified by 2 CWEs, where improperly set permissions could grant unnecessary 

elevated privileges. Low severity issues include the use of HTTP instead of HTTPS for 

transmitting sensitive data in 24 files, identified by 2 CWEs, log injection vulnerabilities in 

20 files due to unsafe logger configurations, identified by 2 CWEs, and publicly writable 

directories affecting 29 files, identified by 2 CWEs, which can be exploited if not properly 

controlled. Addressing these issues by adopting best practices such as enabling server 

certificate validation, securely storing credentials, managing permissions appropriately, using 

HTTPS, securing logger configurations, and controlling access to writable directories is 

crucial for mitigating these vulnerabilities and enhancing the security of the project. 

To ensure the integrity and security of Open Radio Access Network (O-RAN) systems, it 

is essential to utilize effective code analysis and security tools. Codacy, Aikido, Embold, and 

SonarQube each offer unique features that contribute to this goal. 
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Codacy provides automated code review, supporting multiple programming languages 

and integrating seamlessly with CI/CD pipelines. It offers customizable rules and coding 

standards, along with detailed reports and metrics, making it an excellent tool for maintaining 

the code quality and security of O-RAN software components throughout the development 

process. 

Aikido specializes in automated vulnerability scanning and patching, with strong 

integration capabilities for CI/CD tools such as Jenkins, GitHub Actions, and GitLab CI. It 

delivers real-time alerts and comprehensive security reports, which are crucial for preventing 

vulnerabilities in the disaggregated architecture of O-RAN, ensuring secure code from the 

outset. 

Embold enhances code reliability and maintainability through AI-powered code analysis 

that detects design flaws, code smells, and bugs. With support for multiple languages and 

integration with various IDEs and CI/CD tools, Embold provides deep insights into code 

quality and architecture, benefiting the overall robustness of O-RAN software. 

SonarQube is an open-source platform focused on continuous code quality inspection. It 

supports a wide range of programming languages and integrates well with CI/CD pipelines 

and development workflows. SonarQube's extensive plugins and strong community support 

make it a robust solution for maintaining code quality and security in O-RAN through 

continuous integration and delivery processes. 

Each of these tools brings specific advantages to the development and maintenance of 

secure and reliable O-RAN, making them invaluable for ensuring the highest standards of 

software quality and security. 

4.1.3 IAST 

Interactive Application Security Testing (IAST) is essential in the Test and Deploy phases 

of the Secure Software Development Lifecycle (SSDLC), providing real-time analysis of an 
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application as it runs and combining elements of static and dynamic application security 

testing. In the Test phase, IAST tools monitor the application during functional and security 

testing, identifying vulnerabilities such as injection flaws and cross-site scripting by analyzing 

the application's behavior and data flow. IAST offers contextual insights, covering both server-

side and client-side code, which traditional testing methods might miss. Detailed reports 

generated by IAST tools include the severity and location of vulnerabilities, along with 

remediation guidance, aiding developers and testers in addressing security issues effectively. 

The integration of IAST with existing testing frameworks and CI/CD pipelines ensures 

continuous security validation throughout the development lifecycle. During the Deploy 

phase, IAST performs pre-deployment security checks to ensure the application meets security 

standards, and post-deployment, it continues to monitor the application in the production 

environment, identifying new vulnerabilities that may arise. This continuous monitoring and 

feedback loop between development, testing, and operations teams foster ongoing security 

improvement. By identifying and addressing vulnerabilities before and after deployment, 

IAST mitigates security risks and enhances the overall security posture of the application, 

ensuring more secure software releases and reducing the likelihood of security breaches in 

production. 
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Figure 13: Nikto Total Results from Non-RT RIC 

Nikto is an open-source web server scanner that tests for various vulnerabilities, 

including outdated software and potential misconfigurations. Figure 13, several security issues 

were identified, including the absence of the X-Frame-Options and X-Content-Type-Options 

headers. The X-Frame-Options header prevents clickjacking by controlling whether a browser 

can render a page in a frame, while the X-Content-Type-Options header prevents MIME-type 

sniffing by ensuring the browser adheres to the declared content type. Additionally, the scan 

highlighted numerous backup files accessible on the server, categorized under CWE-530, 

indicating a risk of information exposure through unsecured backups. The scan reported 162 

items, suggesting a significant exposure risk. To mitigate these issues, it is recommended to 

configure the X-Frame-Options and X-Content-Type-Options headers properly and secure or 

remove unnecessary backup files. Implementing these measures will enhance the web server's 

security posture by reducing the risk of exploitation through known vulnerabilities. 

Table 16: OpenVAS Total Results from Non-RT RIC 

Severity 
Details 

(CVSS)(CVE) 
Solutions 

High SSL/TLS: Report Vulnerable Cipher Suites for The configuration of these 



 

75 

HTTP 

(7.5) 

(CVE-2016-2183,CVE-2016-6329, 

CVE-2020-12872) 

services should be changed 

so that it does not accept the 

listed cipher suites anymore. 

Low 
TCP Timestamps Information Disclosure 

(2.6)(None) 
To disable TCP timestamps 

Low 
Weak MAC Algorithm(s) Supported (SSH) 

(2.6)(None) 

Disable the reported weak 

MAC algorithm(s). 

Low 
ICMP Timestamp Reply Information Disclosure 

(2.1)(CVE-1999-0524) 

Block ICMP Timestamp 

request and reply 

OpenVAS stands as an open-source solution tailored for thorough vulnerability scanning 

and management purposes, used to identify security issues within networked systems by 

performing various checks on network protocols, operating systems, and applications. In 

Table 16, several vulnerabilities of varying severities were identified. A high-severity issue 

with SSL/TLS configurations reported the presence of vulnerable cipher suites for HTTP 

(CVSS 7.5), including CVE-2016-2183, CVE-2016-6329, and CVE-2020-12872, which can 

be mitigated by updating the configuration to reject these insecure cipher suites. Additionally, 

low-severity vulnerabilities were found: TCP Timestamps Information Disclosure (CVSS 

2.6), resolvable by disabling TCP timestamps; weak MAC algorithms in SSH (CVSS 2.6), 

addressable by disabling the weak algorithms; and ICMP Timestamp Reply Information 

Disclosure (CVSS 2.1, CVE-1999-0524), which can be mitigated by protecting the remote 

host with a firewall. Addressing these issues will significantly enhance the security of the 

system by closing potential avenues for exploitation. 

Nikto and OpenVAS are distinct tools with different scopes and functionalities, making 

direct comparisons challenging. Nikto primarily focuses on web server scanning, identifying 

vulnerabilities related to outdated software, dangerous files, and misconfigurations specific to 
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HTTP/S services. In contrast, OpenVAS offers comprehensive vulnerability assessments 

across entire networks, covering a broad range of vulnerabilities affecting different protocols, 

operating systems, and applications. Nikto generates straightforward reports focused on web 

server issues, whereas OpenVAS provides detailed reports with vulnerability descriptions, 

CVSS scores, and remediation recommendations, supporting integration with security 

management systems for comprehensive vulnerability management. In the context of O-RAN, 

Nikto is valuable for assessing the security of web interfaces used for management or 

configuration, quickly identifying and mitigating web-related vulnerabilities. OpenVAS, on 

the other hand, is essential for thorough and ongoing vulnerability management across the 

entire network of interconnected components typical of O-RAN environments. Its detailed 

reporting and broad coverage make it an ideal tool for maintaining the security of complex, 

multi-component O-RAN. Thus, while both tools offer unique advantages, OpenVAS is better 

suited for comprehensive security assessments and management in O-RAN, whereas Nikto 

excels in targeted web server vulnerability scanning. 

4.1.4 DAST 

Dynamic Application Security Testing (DAST) is critical in the Test and Deploy phases 

of the Secure Software Development Lifecycle (SSDLC). Unlike static analysis, DAST 

involves testing the application by simulating real-world attacks on a running application and 

identifying vulnerabilities during runtime. In the Test phase, DAST conducts black-box 

testing, probing for vulnerabilities such as SQL injection, cross-site scripting (XSS), and 

authentication flaws without prior knowledge of the codebase. By simulating real-world 

attacks, DAST ensures that vulnerabilities missed by static analysis are uncovered, providing 

comprehensive coverage through automated scans integrated into the CI/CD pipeline. This 

dynamic analysis reveals issues that manifest only during runtime, such as session 

management and data handling flaws, and generates detailed reports with remediation steps 
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for developers and testers. In the Deploy phase, DAST performs pre-deployment security 

validation to ensure all vulnerabilities have been mitigated and continues post-deployment 

monitoring to identify new vulnerabilities that may emerge. This continuous security 

assessment maintains the application's integrity, mitigating risks and ensuring robustness 

against potential attacks. By integrating DAST into the SSDLC, organizations can enhance 

their application's security posture, ensuring secure software releases and reducing the 

likelihood of security breaches in production. 

Table 17: Nessus Total Results from Non-RT RIC 

Severity 
Details 

(CVSS)(CVE) 
Solutions 

High 

SSL Medium Strength Cipher Suites Supported: 

SWEET32 

(7.5)(CVE-2016-2183) 

Reconfigure the affected 

application if possible to 

avoid use of medium 

strength ciphers. 

Medium 
SSL Certificate Cannot Be Trusted 

(6.5)(None) 

Purchase or generate a 

proper SSL certificate for 

this service. 

Low 

ICMP Timestamp Request Remote Date 

Disclosure 

(2.1)(CVE-1999-0524) 

Filter out the ICMP 

timestamp requests, and the 

outgoing ICMP timestamp 

replies. 

Nessus, a widely used vulnerability assessment tool, identifies and helps remediate 

security vulnerabilities in networked systems by performing comprehensive scans to detect 

misconfigurations, missing patches, and potential exploits. The results in Table 17 highlight 

vulnerabilities categorized by severity: High, Medium, and Low, each with detailed 

descriptions, CVSS scores, and remediation suggestions. The High severity vulnerability 
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involves the support of SSL medium strength cipher suites (SWEET32), with a CVSS score 

of 7.5 (CVE-2016-2183). The recommended solution is to reconfigure the application to avoid 

using medium-strength ciphers. The Medium severity vulnerability pertains to an untrusted 

SSL certificate, with a CVSS score of 6.5, and the suggested fix is to obtain a proper SSL 

certificate from a trusted certificate authority. The Low severity vulnerability involves ICMP 

timestamp request remote date disclosure, with a CVSS score of 2.1 (CVE-1999-0524), and 

can be mitigated by filtering out ICMP timestamp requests and replies. Resolving these 

vulnerabilities will strengthen the system's security stance, providing better protection against 

potential threats. 

 

Figure 14: Trivy Total Results from Non-RT RIC 

Trivy is a tool for scanning security flaws in containers, Kubernetes clusters, and other 

artifacts, integrating seamlessly into CI/CD pipelines for continuous security monitoring. The 

results presented in Figure 14 identify a range of vulnerabilities across various deployments 

and stateful sets, categorized by severity levels: Critical, High, Medium, Low, and Unknown. 

This scan highlights significant security risks, particularly due to the presence of multiple 
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critical and high-severity vulnerabilities, necessitating immediate action to prevent 

exploitation. Additionally, the detection process has identified duplicate vulnerabilities within 

the same libraries, complicating the analysis and prioritization of these issues. The high 

number of medium and low-severity vulnerabilities further underscores the need for ongoing 

monitoring and timely updates to maintain a strong security posture. Despite the added 

complexity from duplicate vulnerabilities, it is essential to address each one systematically to 

enhance the system's security and stability, thereby reducing the risk of exploitation and 

improving overall resilience against potential threats. 

 

Figure 15: Trivy CVE Results Categorize by Severity from Non-RT RIC 

Figure 15 highlights a high concentration of vulnerabilities after duplicate entries were 

removed, with 60% categorized as High severity and 16% as Critical. This indicates an urgent 

need for remediation to maintain system security and stability. Medium severity CVEs account 

for 21%, requiring planned mitigation, while Low and Unknown severities make up only 3%, 

necessitating regular monitoring. A significant number of Critical vulnerabilities are linked to 

buffer overflow issues, especially in the libc6 library, including CVE-2021-33574, CVE-

2021-35942, CVE-2022-23218, and CVE-2022-23219. These buffer overflow vulnerabilities 
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pose a serious risk, potentially leading to arbitrary code execution and system compromise. 

To improve the accuracy of vulnerability assessments, it is essential to use third-party tools to 

remove duplicate entries from raw data. These tools ensure the dataset is accurate and reliable 

by identifying and eliminating redundant data, thus enhancing data integrity. This results in 

more precise vulnerability analyses and more effective risk management strategies. Moreover, 

numerous vulnerabilities still require analysis, highlighting the necessity for continuous 

vigilance and assessment. By consistently updating and refining the dataset, organizations can 

better prioritize remediation efforts and effectively address potential security gaps. 

Nessus and Trivy are both valuable tools for securing O-RAN, each with distinct 

strengths and some limitations. Nessus offers comprehensive vulnerability scanning across 

network devices, operating systems, and applications, providing detailed reports with CVSS 

scores, descriptions, and remediation recommendations. Its ability to perform configuration 

audits and detect malware makes it essential for ensuring network security and compliance in 

O-RAN. Trivy, on the other hand, specializes in container security, focusing on scanning 

container images and application dependencies for vulnerabilities. It integrates seamlessly 

with Kubernetes, making it highly relevant for O-RAN that use containerized microservices 

and Kubernetes clusters. Trivy's real-time scanning capabilities support continuous integration 

and deployment workflows, crucial for the dynamic nature of O-RAN environments. 

However, Trivy's tendency to produce duplicate results can complicate analysis, making it 

more challenging to prioritize and address vulnerabilities effectively. While Nessus offers 

broad coverage and detailed analysis suitable for thorough security audits, Trivy provides 

quick and efficient scanning for modern, containerized deployments but requires careful 

management of duplicate findings. Using both tools together can provide a comprehensive 

security solution, leveraging Nessus for wide-ranging vulnerability assessments and Trivy for 

specialized container and Kubernetes security. 
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4.1.5 Pentest 

Penetration testing, or ethical hacking, is crucial in the Maintenance phase of the Secure 

Software Development Lifecycle (SSDLC), ensuring the ongoing security and integrity of 

software post-deployment. This phase focuses on tasks such as applying patches, updating 

components, and responding to emerging threats. Penetration testing simulates real-world 

attacks to identify and mitigate vulnerabilities, thereby preventing exploitation by malicious 

actors. It identifies new vulnerabilities introduced through updates, verifies the effectiveness 

of patches, assesses existing security controls, and detects configuration issues. By simulating 

advanced threats, penetration testing helps organizations understand their defenses' resilience 

against modern attacks, informing security strategy adjustments. Additionally, regular 

penetration testing ensures compliance with regulatory frameworks and industry standards, 

avoiding penalties. The proactive approach of penetration testing enables organizations to 

manage risks effectively, continuously improve security measures, and enhance incident 

response strategies. Thus, penetration testing in the Maintenance phase is essential for 

maintaining a robust security posture, ensuring software reliability, and safeguarding against 

evolving threats. 

 

Figure 16: Metasploit with Nmap Integration Total Results from Non-RT RIC 

Metasploit, an open-source penetration testing framework, integrates with Nmap to 
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enhance vulnerability assessment by simulating real-world attacks and identifying security 

weaknesses. Nmap is utilized to discover hosts, open ports, and services on a network, 

providing detailed information about each service. The results in Figure 16 identified one open 

port, TCP port 22, which is running the SSH service OpenSSH 8.2p1 on an Ubuntu Linux 

system. Several vulnerabilities were detected in the SSH service, categorized with varying 

levels of severity. These vulnerabilities indicate potential security weaknesses that need to be 

addressed to ensure the system's security. The integration of Nmap's scanning capabilities 

within the Metasploit framework allows for a comprehensive analysis of the network, 

identifying critical security issues that can be mitigated to enhance the overall security posture. 

Table 18: Metasploit with Nmap Integration Results Details and Solutions 

CVE 

(CVSS) 
Details Solutions 

CVE-2020-15778 

(6.8) 

A vulnerability in OpenSSH that 

allows an attacker to potentially 

execute arbitrary code. 

Upgrade to the latest version of 

OpenSSH. Apply security 

patches provided by your OS 

vendor. 

CVE-2020-12062 

(5.0) 

A vulnerability in OpenSSH that 

could allow an attacker to cause a 

denial of service. 

CVE-2010-4816 

(5.0) 

A vulnerability in OpenSSH related 

to improper handling of network 

connections. 

CVE-2021-28041 

(4.6) 

A vulnerability in OpenSSH that 

allows unauthorized users to bypass 

certain access controls. 

CVE-2021-41617 A vulnerability in OpenSSH that 
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(4.4) could lead to unintended 

information disclosure. 

CVE-2020-14145 

(4.3) 

A vulnerability in OpenSSH 

affecting the handling of certain 

network packets. 

CVE-2016-20012 

(4.3) 

A vulnerability in OpenSSH that 

could lead to a potential denial of 

service. 

CVE-2023-51767 

(3.5) 

A vulnerability in OpenSSH that 

affects certain encryption protocols. 

CVE-2021-36368 

(2.6) 

A minor vulnerability in OpenSSH 

that could lead to information 

leakage under specific conditions. 

Table 18 provides an overview of vulnerabilities detected in OpenSSH 8.2p1, listing 

CVE identifiers, severity scores, descriptions, and mitigation solutions. Notable 

vulnerabilities include CVE-2020-15778 (score 6.8), which allows arbitrary code execution, 

and CVE-2020-12062 (score 5.0), which can cause a denial of service. Other issues involve 

unauthorized access control bypass and unintended information disclosure. The primary 

solution across all vulnerabilities is to upgrade to the latest OpenSSH version and apply 

relevant security patches. This proactive approach is crucial for minimizing security risks and 

maintaining system integrity. 
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Figure 17: Kube-hunter Total Results from Non-RT RIC 

Kube-Hunter is a security tool designed to scan Kubernetes clusters, identifying potential 

vulnerabilities in their configurations and components. Figure 17 identified a node operating 

as both node and master at IP address 192.168.40.128. Key services detected include the 

Kubelet API on port 10250, responsible for managing pod operations; Etcd on port 2379, 

which stores cluster data, configurations, and secrets; and the API Server on port 6443, which 

manages all cluster operations. A significant vulnerability identified, labeled KHV002, 

involves the Kubernetes version disclosure via the /version endpoint on the API server, 

categorized under Initial Access. This vulnerability, evidenced by the version v1.22.17, could 

be exploited by attackers to target specific weaknesses in that version. To mitigate these risks, 

it is recommended to restrict API server access, hide version information, regularly update 

Kubernetes components, and continuously monitor and audit the cluster for suspicious 

activities. These measures are essential to enhancing the security posture of Kubernetes 

deployments. 

The comparison of Metasploit with Nmap integration and Kube-Hunter highlights their 

key security features and relevance to O-RAN. Metasploit combined with Nmap offers 

extensive vulnerability scanning by leveraging Nmap's network discovery and service 
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identification with Metasploit’s exploit framework, enabling automated exploitation and 

detailed vulnerability reporting. This tool combination is particularly relevant for O-RAN due 

to the need for both broad network scans and targeted penetration testing. It provides a holistic 

security assessment, addressing network-level vulnerabilities and application-level security. 

In contrast, Kube-Hunter, designed specifically for Kubernetes environments, performs 

targeted scans to identify misconfigurations and vulnerabilities in Kubernetes components. Its 

relevance to O-RAN lies in the adoption of containerized architectures within O-RAN, where 

Kubernetes often orchestrates network functions. Kube-Hunter's focused approach ensures the 

security of the orchestration layer in cloud-native deployments. Together, these tools offer a 

comprehensive security assessment for O-RAN, with Metasploit and Nmap addressing broad 

and deep security evaluations, and Kube-Hunter ensuring the integrity of the container 

orchestration layer. 

4.2 Near-RT RIC 

4.2.1 SCA 

 

Figure 18: OWASP Dependency Check Total Results from Near-RT RIC 

Figure 18 reported zero dependencies scanned and no vulnerabilities detected, as the 

directory lacked the configuration files needed for the tool to identify and analyze 

dependencies. This outcome is primarily due to the absence of necessary configuration files, 
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such as `package.json` or `pom.xml`, which define dependencies for the project. Similarly, 

Mend.io found no vulnerabilities, as it also relies on these configuration files to perform its 

analysis. This absence highlights a significant difference between the Near-RT RIC and Non-

RT RIC directories, with the latter containing various tools and simulators that include their 

dependencies. 

The substantial difference in the results between the Non-RT Ric and Near-RT Ric scans 

is due to the presence of various tools and a simulator in the Non-RT Ric directory, which are 

absent in the Near-RT Ric directory. The Non-RT Ric directory includes essential 

configuration files, such as `package.json` for JavaScript projects, which define the 

dependencies necessary for a thorough scan. These tools and simulators inherently possess 

their own dependencies, enabling the scan to detect and analyze potential vulnerabilities. In 

contrast, the Near-RT Ric directory lacks these tools and configuration files, resulting in no 

dependencies being identified or assessed, leading to a report of zero vulnerabilities. This 

highlights the importance of ensuring that all necessary configuration files and tools that 

define dependencies are present in the directory being scanned. Without these components, 

the dependency-check tool cannot perform an effective analysis, leading to incomplete or 

inaccurate scan results. 

4.2.2 SAST 

The Codacy scan of the Near-RT RIC identified only one low-severity issue concerning 

the use of insecure modules or libraries. Specifically, the Dockerfile in the `ci` directory was 

flagged for not using the `--no-install-recommends` option during package installation. This 

omission can lead to the inclusion of additional, potentially unnecessary packages that were 

not explicitly wanted, which can introduce security vulnerabilities, increase the Docker image 

size, and complicate maintenance. To mitigate this risk, it is recommended to modify the 

Dockerfile to include the `--no-install-recommends` option, ensuring that only the specified 
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packages are installed. For example, the command `apt-get install -y some-package` should 

be changed to `apt-get install -y --no-install-recommends some-package`. This adjustment 

aligns with best practices for creating leaner, more secure Docker images and enhances overall 

system efficiency and security by reducing unnecessary dependencies. 

Table 19: Aikido Total Results from Near-RT RIC 

Severity Details 

(Amount of files) 
Solutions 

High 
Container running as root can allow attacker to 

escalate attacks (3) 

On your Pod, set 

runAsNonRoot: true and 

make sure runAsUser: is not 

set to 0, which is root 

High 
Automatic upgrades or base Docker images can 

lead to supply chain attacks. (1) 

It's recommended to pin the 

version of base images 

inside of Docker containers. 

High 1 exposed secrets (1) 

Move the secret out and use 

a tool to inject the secrets at 

run-time. 

Medium Docker container runs as default root user (2) 
Add 'USER username' to the 

end of your file. 

Medium 
Container processes can gain more privileges 

than its parent (8) 

set 

AllowPrivilegeEscalation to 

False 

Medium 
Filesystem for docker container should not be 

writeable (8) 

On your Pod, set 

securityContext: 

readOnlyRootFilesystem: 
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true 

Medium 
Default security context allows pods to access 

host system. (7) 

Define a Security Context 

based that gives the 

minimum amount of access 

required for this workload. 

Medium 
Default Kubernetes settings allow containers to 

eavesdrop on traffic. (8) 

Define at least one 

PodSecurityPolicy (PSP) to 

prevent containers with 

NET_RAW capability from 

launching. 

The Aikido results in Table 19 reveal significant security vulnerabilities primarily 

associated with privilege escalation, improper user permissions, and insecure default 

configurations in Docker and Kubernetes environments. High severity issues include 

containers running as root, automatic upgrades leading to supply chain attacks, and exposed 

secrets, each requiring specific configurations such as setting `runAsNonRoot: true`, pinning 

base image versions, and managing secrets at runtime. Medium severity issues encompass the 

use of default root users, containers gaining excessive privileges, writable filesystems, and 

default security contexts allowing undue access to host systems and network traffic. 

Addressing these vulnerabilities involves implementing security best practices such as 

defining non-root users, setting `AllowPrivilegeEscalation` to `false`, making filesystems 

read-only, and establishing stringent `PodSecurityPolicies`. These measures are crucial for 

enhancing the security posture of containerized applications, thereby mitigating potential risks 

and vulnerabilities. 
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Figure 19: Embold Total Results from Near-RT RIC 

The Embold analysis of the Near-RT RIC repository indicates strong overall code 

quality. Figure 19 is reflected in a high rating of 4.42. The repository consists of 25 lines of 

Python code, with 10 executable lines, making it relatively small and potentially easier to 

manage. Importantly, the scan found no security vulnerabilities, anti-patterns, or code 

duplication, all of which are positive indicators of the code's robustness and maintainability. 

However, the analysis did identify two code issues, resulting in a high issue density due to 

the small size of the codebase. Addressing these issues could further improve the code's 

quality. 
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Figure 20: SonarQube Total Results from Near-RT RIC 

The SonarQube in Figure 20 reveals high reliability and security, with no bugs or 

vulnerabilities detected, earning the code an A rating in both categories. However, the presence 

of two security hotspots highlights the need for further review, specifically addressing the 

insecure use of the HTTP protocol for sensitive data by switching to HTTPS. This concern 

aligns with the specifications outlined by WG11 [11], which mandates stringent security 

measures to ensure the confidentiality, integrity, and availability of data transmitted within O-

RAN. Therefore, before implementing the switch to HTTPS, it is crucial to confirm 

compliance with WG11's specifications, ensuring that the transition adheres to the established 

security protocols and does not introduce new vulnerabilities. The codebase is considered 

highly maintainable, despite 3,700 code smells. The analysis also shows no code duplication, 

which is a positive indicator of maintainability. Nonetheless, the lack of unit tests and 0% 

code coverage indicate a need for improved testing practices to ensure the robustness and 

reliability of the code. 
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4.2.3 IAST 

The absence of results from the Nikto scan can be attributed to the lack of web services 

within this environment. Nikto is a web server scanner designed to identify vulnerabilities and 

misconfigurations in web servers by checking for outdated software, insecure files, and other 

common issues. However, since the Near-RT RIC does not host any web servers or web 

services, there were no HTTP(S) endpoints for Nikto to scan. Consequently, this resulted in 

no findings. This underscores the importance of selecting appropriate tools based on the 

specific context and components present in the environment being analyzed. In this case, using 

Nikto was ineffective because there were no web services present. 

The results from OpenVAS in Table 20 reveal several vulnerabilities, consistent with 

similar results in Non-RT RIC, that need addressing to enhance system security. A high 

severity issue involves the use of vulnerable cipher suites for HTTP, with specific 

vulnerabilities identified as CVE-2016-2183, CVE-2016-6329, and CVE-2020-12872, 

necessitating the reconfiguration of services to use secure cipher suites. Low severity issues 

include TCP timestamps information disclosure, weak MAC algorithms in SSH, and ICMP 

timestamp reply information disclosure. These vulnerabilities can be mitigated by disabling 

TCP timestamps, weak MAC algorithms, and protecting the system against ICMP timestamp 

requests and replies through firewall configurations. Addressing these issues is essential to 

strengthen the system's security and protect against potential exploits. 

Table 20: OpenVAS Total Results from Near-RT RIC 

Severity 
Details 

(CVSS)(CVE) 
Solutions 

High 

SSL/TLS: Report Vulnerable Cipher Suites for 

HTTP 

(7.5) 

The configuration of this 

services should be changed 

so that it does not accept the 
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(CVE-2016-2183,CVE-2016-6329, 

CVE-2020-12872) 

listed cipher suites anymore. 

Low 
TCP Timestamps Information Disclosure 

(2.6)(None) 
To disable TCP timestamps 

Low 
Weak MAC Algorithm(s) Supported (SSH) 

(2.6)(None) 

Disable the reported weak 

MAC algorithm(s). 

Low 
ICMP Timestamp Reply Information Disclosure 

(2.1)(CVE-1999-0524) 

Protect the remote host by a 

firewall 

4.2.4 DAST 

The Nessus scan results from Table 21 reveal several security vulnerabilities that are 

consistent with those found in the Non-RT RIC. A high severity issue identified is the support 

of medium strength cipher suites, specifically SWEET32, which poses a significant risk and 

requires reconfiguration to use stronger ciphers. Additionally, a medium severity issue is the 

presence of an untrusted SSL certificate, which can facilitate man-in-the-middle attacks, 

necessitating the acquisition of a proper SSL certificate from a trusted authority. A low severity 

issue involves ICMP timestamp request remote date disclosure, which can expose the system's 

time and potentially aid attackers. Mitigating this issue involves filtering out ICMP timestamp 

requests and replies. Addressing these vulnerabilities is essential to improving the security 

posture and protecting against potential exploits. 

Table 21: Nessus Total Results from Near-RT RIC 

Severity 
Details 

(CVSS)(CVE) 
Solutions 

High 
SSL Medium Strength Cipher Suites Supported: 

SWEET32 

Reconfigure the affected 

application if possible to 
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(7.5)(CVE-2016-2183) avoid use of medium 

strength ciphers. 

Medium 
SSL Certificate Cannot Be Trusted 

(6.5)(None) 

Purchase or generate a 

proper SSL certificate for 

this service. 

Low 

ICMP Timestamp Request Remote Date 

Disclosure 

(2.1)(CVE-1999-0524) 

Filter out the ICMP 

timestamp requests (13), 

and the outgoing ICMP 

timestamp replies (14). 

Figure 21 highlights a significant number of vulnerabilities across various deployments, 

with particular concern for the critical and high-severity vulnerabilities found in key 

deployments such as ‘ricplt-dbaas-server’, ‘prometheus-alertmanager’, ‘ricplt-o1mediator’, 

and ‘appmgr’. These critical and high-severity issues require urgent remediation to mitigate 

major security risks. Additionally, the high number of medium and low-severity vulnerabilities 

underscores the need for comprehensive security upgrades throughout the system. Similar 

findings were observed in the Non-RT RIC, where duplicate vulnerabilities in the same 

libraries were identified, complicating the analysis and prioritization. Addressing these 

vulnerabilities is essential to improve the security posture of the Near-RT RIC environment, 

ensuring strong protection against potential exploits and maintaining the system’s overall 

integrity. 
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Figure 21: Trivy Total Results from Near-RT RIC 

 

 

Figure 22: Trivy CVE Results Categorize by Severity from Near-RT RIC 

After cleaning somes data, Figure 22 reveals that medium severity vulnerabilities 

dominate, with 301 CVEs, representing 57% of the total. High and low severity vulnerabilities 

are evenly split, each comprising 21% of the total, with 110 high severity CVEs and 109 low 

severity CVEs. Critical vulnerabilities are the rarest, with only 6 CVEs, making up 1% of the 

total. Significantly, these critical vulnerabilities match those identified in the Non-RT RIC, 
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mainly involving buffer overflow issues. This distribution indicates a pressing need to 

prioritize remediation efforts on medium and high severity vulnerabilities to bolster system 

security, while also addressing the critical buffer overflow vulnerabilities due to their severe 

risk potential. 

Trivy's results reveal several challenges and limitations in managing vulnerabilities. One 

issue is the repetition of CVEs across multiple deployments, making analysis more complex 

as each CVE must be individually reviewed. As a free tool, Trivy lacks the advanced features 

available in paid solutions, which limits the depth and comprehensiveness of its reports. It 

also lacks advanced filtering, reporting, and integration capabilities, making thorough analysis 

in complex environments difficult. 

To address these challenges, third-party tools with advanced features can provide better 

reporting, filtering, and integration capabilities, facilitating easier management and 

remediation of vulnerabilities. Tools that consolidate and deduplicate vulnerabilities can help 

prioritize and address critical issues more effectively. Investing in tools that offer detailed and 

customizable reports can provide insights into critical vulnerabilities and suggest specific 

remediation steps, thereby enhancing the overall security posture. While Trivy is useful for 

identifying vulnerabilities, its limitations highlight the need for more advanced third-party 

solutions to improve the security of the Near-RT RIC environment. 

4.2.5 Pentest 

The result from Metasploit in Figure 23 identified several critical vulnerabilities similar 

to those found in the Non-RT RIC environment. Notably, the scan revealed that port 111/tcp, 

associated with the RPCBind service, is open but did not show specific vulnerabilities linked 

to it. While no immediate vulnerabilities were detected for RPCBind, the presence of an open 

port remains a security concern, as it could potentially be exploited if not properly secured. It 

is crucial to review and harden the configuration of the RPCBind service to minimize any 



 

96 

risks. Regular monitoring and vulnerability scanning should be implemented to ensure that 

the service remains secure. Addressing these issues and enforcing consistent security policies 

across all environments are essential steps to bolster the overall security posture of the Near-

RT RIC, preventing possible exploits through open ports. 

 

Figure 23: Metasploit with Nmap Integration Total Results from Near-RT RIC 

The Kube-hunter results reveal a significant vulnerability related to Kubernetes version 

disclosure in Figure 24, which mirrors findings in the Non-RT RIC environment, albeit with 

different Kubernetes versions (Near-RT is v1.16.0 but v1.22.17 from Non-RT RIC). This 

vulnerability exposes the Kubernetes version via the API server’s /version endpoint, 

potentially aiding attackers in exploiting known issues specific to these versions. Despite the 

version differences, the consistent presence of this vulnerability indicates similar security 

configurations across both environments. To mitigate this risk, it is imperative to restrict 

access to sensitive endpoints, regularly update Kubernetes to the latest stable versions, and 

implement stringent role-based access control (RBAC) policies. These measures will enhance 

the security posture and protect against potential exploits, ensuring robust defense 

mechanisms are in place for both Near-RT RIC and Non-RT RIC environments. 
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 Figure 24: Kube-hunter Total Results from Near-RT RIC 

In the context of ensuring robust security for O-RAN with SSDLC, a detailed comparison 

of these tools is shown in Table 22. Various tools are employed across different phases to 

enhance security and mitigate vulnerabilities. During the Requirement and Design Phase, 

OWASP Dependency Check and Mend.io are utilized. OWASP Dependency Check is 

advantageous due to its capability to detect known vulnerabilities in project dependencies, its 

support for multiple programming languages, and its regular updates. However, it may present 

false positives or negatives and is limited to known vulnerabilities. Mend.io offers 

comprehensive open-source security and compliance management, automated policy 

enforcement, and real-time alerts, though it can be expensive for small teams and requires 

complex initial setup and configuration. 

In the Implementation Phase, tools like Codacy, Aikido, Embold, and SonarQube are 

critical. Codacy provides continuous code quality and security analysis with support for 

various programming languages and CI/CD tools integration, but its free tier has limited 

customization and it may miss context-specific issues. Aikido, tailored for O-RAN systems, 

integrates real-time threat intelligence and offers comprehensive security checks but is 
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relatively new and necessitates thorough training. Embold identifies design issues, 

vulnerabilities, and code smells, prioritizing issues based on impact, although it may require 

significant configuration and can be costly. SonarQube, known for detecting bugs, 

vulnerabilities, and code smells across over 25 programming languages, has a strong 

community and extensive documentation, but performance issues may arise with large 

codebases, and some features require a paid version. 

For the Test and Deploy Phase, Nessus, Trivy, and Nikto are employed. Nessus provides 

comprehensive vulnerability scanning with regular updates and detailed reports, though it can 

be resource-intensive and expensive in its professional version. Trivy is a fast and simple tool 

that scans containers, filesystems, and Git repositories, but it is limited to known 

vulnerabilities and may produce false positives. Nikto is an open-source web server scanner 

that detects various vulnerabilities and configuration issues, but it generates a high number of 

false positives and is limited to web server vulnerabilities. 

Finally, in the Maintenance Phase, OpenVAS, Metasploit with Nmap, and Kube-hunter 

are instrumental. OpenVAS offers a comprehensive open-source vulnerability scanning 

solution with regular updates and detailed remediation guidance, but it is complex to set up 

and resource-intensive. The combination of Metasploit with Nmap is powerful for penetration 

testing, featuring an extensive database of exploits and strong community support, yet it 

requires significant expertise and may be overkill for small projects. Kube-hunter, designed 

specifically for Kubernetes security, detects a wide range of Kubernetes vulnerabilities and is 

easy to set up, though it is limited to Kubernetes environments and may not cover all types of 

vulnerabilities. 

Table 22 Tool Alignment with SSDLC Phases for O-RAN 

Phase Tool Pros Cons 

Requirement OWASP 
- Detects known vulnerabilities 

in project dependencies. 

- May have false positives 

or false negatives. 
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and Design Dependency 

Check 

- Supports multiple 

programming languages. 

- Regular updates with the 

latest vulnerability data. 

- Limited to known 

vulnerabilities only. 

Mend.io 

- Comprehensive open-source 

security and compliance 

management. 

- Automated policy 

enforcement. 

- Real-time alerts and detailed 

remediation guidance. 

- Can be expensive for 

small teams. 

- Initial setup and 

configuration can be 

complex. 

Implement 

Codacy 

- Continuous code quality and 

code security analysis. 

- Supports various 

programming languages. 

- Integration with multiple 

CI/CD tools. 

- Limited customization 

in the free tier. 

- May miss some context-

specific issues. 

Aikido 

- Specific focus on O-RAN 

systems. 

- Comprehensive security and 

compliance checks. 

- Real-time threat intelligence 

integration. 

- Still a relatively new 

tool, so it may have 

some teething issues. 

- Requires thorough 

training for effective 

use. 

Embold 

- Identifies design issues, 

vulnerabilities, and code 

smells. 

- Prioritizes issues based on 

impact. 

- Supports a wide range of 

programming languages. 

- May require significant 

configuration for 

optimal use. 

- Pricing can be high for 

extensive features. 

SonarQube 

- Detects bugs, vulnerabilities, 

and code smells. 

- Supports over 25 

programming languages. 

- Strong community and 

extensive documentation. 

- Performance can be an 

issue with large 

codebases. 

- Some advanced features 

require a paid version. 

Test and Nessus 
- Comprehensive vulnerability 

scanning. 

- Can be resource-

intensive. 
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Deploy - Regular updates with the 

latest vulnerabilities. 

- Easy-to-use interface and 

detailed reports. 

- Higher cost for the 

professional version. 

Trivy 

- Fast and simple to use. 

- Scan containers, filesystems, 

and Git repositories. 

- Regular updates with the 

latest vulnerability data. 

- Limited to known 

vulnerabilities. 

- May have false 

positives. 

Nikto 

- Open-source web server 

scanner. 

- Detects various 

vulnerabilities and 

configuration issues. 

- Regularly updated with new 

vulnerabilities. 

- Generates a high number 

of false positives. 

- Limited to web server 

vulnerabilities. 

OpenVAS 

- Comprehensive open-source 

vulnerability scanner. 

- Regular updates with the 

latest vulnerabilities. 

- Detailed reporting and 

remediation guidance. 

- Can be complex to set 

up and configure. 

- Resource-intensive 

during scans. 

Maintenance 

Metasploit 

with Nmap 

- Powerful combination for 

penetration testing. 

- Extensive database of known 

exploits. 

- Strong community and 

regular updates. 

- Requires significant 

expertise to use 

effectively. 

- Can be overkill for small 

projects. 

Kube-

hunter 

- Specifically designed for 

Kubernetes security. 

- Detects a wide range of 

Kubernetes vulnerabilities. 

- Easy to set up and run. 

- Limited to Kubernetes 

environments. 

- May not cover all types 

of vulnerabilities. 
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4.3 Demonstration 

4.3.1 OpenVAS: ICMP Timestamp Disclosure 

From the various results, some vulnerabilities appear in both Non-RT RIC and Near-RT 

RIC, including the ICMP Timestamp disclosure identified using OpenVAS in Figure 25, as 

described in Tables 17 and 21. ICMP or Internet Control Message Protocol operates at the 

network layer and helps network devices diagnose communication issues. One notable 

message type within ICMP is the Timestamp message, which allows devices to request and 

respond with the current time in milliseconds since midnight UTC. However, the vulnerability 

identified as CVE-1999-0524 involves systems responding to these ICMP Timestamp 

requests, inadvertently revealing their system time. This disclosure can be exploited by 

attackers, presenting several risks. Attackers can obtain system uptime information, enabling 

them to discern patterns of activity and maintenance, thus aiding in the planning of targeted 

attacks. Additionally, it allows for network mapping, enabling attackers to identify the most 

active devices. Furthermore, timestamp information can be used to synchronize coordinated 

attacks, leveraging precise timing to maximize their impact. 

 

 

Figure 25: OpenVAS Vulnerability Scan Results Before Remediation 

To address the identified issue, various solutions were evaluated. The solution selected, 

due to its simplicity and minimal side effects, involved blocking ICMP timestamps using 

Iptables. This approach was chosen because it effectively mitigates the vulnerability without 

significantly impacting other network functionalities. As shown in Figure 26, a specific rule 

was added to the iptables configuration to discard ICMP timestamp requests and replies. The 
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figure confirms that this rule has been successfully implemented within the system, ensuring 

that no timestamp information is transmitted. 

 

Figure 26: iptables Rules for Dropping ICMP Timestamp Requests and Replies 

Figures 27 and 28 detail the testing process using hping3, a network tool for packet 

crafting and analysis. In Figure 27, an ICMP timestamp reply test directed at the destination 

server resulted in an "operation not permitted" message, clearly indicating that the ICMP 

timestamp reply cannot be sent. This response confirms the effectiveness of the rule in 

blocking outgoing ICMP timestamp replies. Figure 28 presents the results of an ICMP 

timestamp request test initiated from an external server. The test revealed that all five 

requested packets resulted in 100% packet loss, meaning the ICMP timestamp requests could 

not reach the server. This outcome further validates the rule's efficacy in blocking incoming 

ICMP timestamp requests. 

 

Figure 27: ICMP Timestamp Reply Testing Results 

 

Figure 28: ICMP Timestamp Request Testing Results 

To ensure comprehensive mitigation of the ICMP timestamp vulnerability, an additional 

test was conducted using OpenVAS again. Figure 29 illustrates the results of this test, 
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confirming that the ICMP timestamp vulnerability had been successfully resolved. 

 

Figure 29: OpenVAS Vulnerability Scan Results After Remediation 

While blocking ICMP timestamps is an effective measure to mitigate certain 

vulnerabilities, it is important to consider the potential side effects on network operations. One 

major challenge involves troubleshooting difficulties. ICMP, particularly echo requests and 

replies (commonly known as ping), is a fundamental tool used for network troubleshooting. 

By blocking or limiting ICMP traffic, network administrators may find it more challenging to 

diagnose connectivity issues, as it becomes harder to determine if a host is reachable or to 

identify the source of connectivity problems. 

Additionally, network monitoring disruptions can occur. Many network monitoring tools 

rely on ICMP to assess the availability and latency of devices. Blocking ICMP traffic can 

interfere with these tools, leading to inaccurate monitoring results. This interference can cause 

monitoring systems to report false positives or fail to detect actual network issues, thereby 

reducing the overall effectiveness of network monitoring and management. 

Furthermore, remote management challenges arise when ICMP is blocked. Remote 

management tools often use ICMP to verify connectivity before proceeding with more 

complex operations. Disrupting ICMP traffic can make remote management less reliable, 

potentially leading to increased downtime or difficulties in managing remote devices 

effectively. These challenges underscore the importance of carefully weighing the benefits of 

blocking ICMP timestamps against the potential impact on network operations and 

management. 

Blocking ICMP timestamps using iptables has been demonstrated as an effective solution 
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for mitigating the CVE-1999-0524 vulnerability in both Non-RT RIC and Near-RT RIC 

systems. This method prevents the disclosure of system time, which could otherwise be 

exploited for network mapping, system uptime analysis, and coordinated attacks. Successful 

implementation and testing, using tools like hping3 and OpenVAS, confirmed the efficacy of 

this approach with minimal impact on other network functionalities. 

However, the strategy of blocking ICMP traffic presents potential trade-offs. It can 

complicate network troubleshooting, disrupt network monitoring, and hinder remote 

management tasks. These challenges necessitate a careful balance between the security 

benefits and operational impact. Thus, while blocking ICMP timestamps is a straightforward 

and effective mitigation tactic, ongoing evaluation and adjustments are essential to maintain 

both network functionality and security at optimal levels. 

4.3.2 Kube-hunter: Kubernetes Version Disclosure 

In both the Non-RT RIC and Near-RT RIC environments, Figures 19 and 26, respectively, 

depict a vulnerability associated with Kubernetes version disclosure identified by Kube-

hunter. This vulnerability underscores a significant security threat linked to the exposure of 

the Kubernetes version used in the system infrastructure. Knowledge of specific Kubernetes 

versions can markedly increase the risk of targeted attacks, as adversaries can exploit known 

vulnerabilities specific to that version. Critical information sources include the Kubernetes 

API `/version` endpoint, which can divulge essential version details. Preventing unauthorized 

access to such information is crucial for maintaining a secure environment. 

When attackers ascertain the specific Kubernetes version in use, they can exploit known 

vulnerabilities within that version, potentially leading to unauthorized access, privilege 

escalation, or service disruption. For example, a certain version might have a documented 

privilege escalation flaw that an attacker could exploit to gain administrative access. 

Additionally, knowledge of the Kubernetes version enables more precise and effective 
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targeted attacks compared to generic ones. Attackers can develop exploits tailored to the 

specific version, making their attacks more successful and difficult to defend against. 

The public disclosure of version information also assists attackers in reconnaissance, 

providing valuable insights into the system's defenses and potential vulnerabilities. This 

information allows attackers to plan their strategies more effectively, increasing the likelihood 

of a successful breach. Moreover, exposing such sensitive information can lead to compliance 

and regulatory issues. Regulatory frameworks like GDPR or HIPAA require strict controls on 

information disclosure, and non-compliance can result in legal repercussions, fines, and a loss 

of trust from customers and stakeholders. 

To effectively and minimally disruptively address the Kubernetes version disclosure 

vulnerability, the recommended solution is to modify the API Server Configuration file by 

adding the "--enable-debugging-handlers=false" flag to the command section as shown in 

Figure 30. This file is typically located at "/etc/kubernetes/manifests/kube-apiserver.yaml". 

By default, Kubernetes enables debugging handlers, which can expose sensitive information, 

including the Kubernetes version, via endpoints like /version. Disabling debugging handlers 

ensures that these endpoints are not available, thereby preventing unauthorized users from 

accessing them. 

By implementing this configuration, the security of the Kubernetes environment is 

significantly enhanced. Only necessary API endpoints will be exposed, and debugging 

information that includes version details will not be accessible. This greatly reduces the risk 

of attackers exploiting known vulnerabilities associated with specific Kubernetes versions. 

The restriction on debugging handlers mitigates potential security breaches by limiting the 

exposure of version details that could be used for targeted attacks. 
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Figure 30: Kubernetes API Server Configuration with Debugging Handlers Disabled 

After making the necessary changes to the API Server Configuration file, it is crucial to 

verify the effectiveness of the solution. Running the Kube-hunter tool again post-

implementation showed that "No vulnerabilities were found" as depicted in Figure 31. This 

result indicates that the Kubernetes version disclosure vulnerability has been successfully 

resolved, confirming that the applied configuration changes have effectively secured the 

system against this specific threat. 
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Figure 31: Kube-hunter Vulnerability Scan Results After Remediation 

Implementing the "--enable-debugging-handlers=false" flag to mitigate the Kubernetes 

version disclosure vulnerability does come with some significant side effects that need to be 

addressed. One of the primary side effects is limited debugging capabilities. Disabling this 

flag prevents access to several crucial debugging endpoints such as `/metrics`, `/logs`, `/run`, 

`/exec`, `/attach`, and `/portforward`. These endpoints are essential for diagnosing issues 

within pods and the cluster, and without them, troubleshooting issues with pods and nodes 

may become more challenging, requiring alternative methods to gather necessary information. 

Another significant side effect is the impact on automated tools. Any automated scripts or 

tools that rely on these endpoints for monitoring or debugging will need to be updated or 

replaced, potentially leading to temporary disruptions in operations until the changes are 

implemented. Additionally, there are potential gaps in monitoring. Disabling these handlers 

means losing access to some metrics provided by the `/metrics` endpoint, which can lead to 
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monitoring gaps unless compensated by other monitoring solutions that do not depend on 

these endpoints.  

To address these side effects, several mitigation strategies can be implemented. For 

alternative monitoring solutions, dedicated monitoring tools like Prometheus can be used to 

gather metrics without relying on Kubelet’s debugging endpoints. Comprehensive logging 

solutions can also be implemented to capture and analyze logs from all cluster components. 

Enhanced authentication and authorization policies can be implemented to ensure that only 

authorized users can access these endpoints, instead of completely disabling debugging 

handlers. Finally, documenting the changes and training the operations team on alternative 

debugging and monitoring methods is essential to ensure a smooth transition. By carefully 

planning and implementing these strategies, the security of the Kubernetes environment can 

be enhanced while minimizing the operational impact of disabling the "--enable-debugging-

handlers" flag. 

In conclusion, addressing the Kubernetes version disclosure vulnerability in both Non-

RT RIC and Near-RT RIC environments is critical for maintaining a secure infrastructure. This 

vulnerability, identified by Kube-hunter, poses a significant threat by potentially allowing 

attackers to exploit known vulnerabilities associated with specific Kubernetes versions. 

Implementing the "--enable-debugging-handlers=false" flag in the API Server Configuration 

file ensures that sensitive debugging information is not exposed, thereby preventing 

unauthorized access to version details. This configuration significantly enhances security by 

restricting access to necessary endpoints only. Verification through tools like Kube-hunter 

should show that the vulnerability has been resolved. However, it is essential to address 

potential side effects such as limited debugging capabilities, impact on automated tools, and 

potential gaps in monitoring by implementing alternative monitoring solutions, enhancing 

authentication and authorization, and providing necessary documentation and training. 
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Chapter 5 Conclusion and Future Work 

From Table 22, it is evident that each tool has both advantages and disadvantages for the 

O-RAN system. To achieve optimal results, it is essential to implement cross-functional 

testing, which revealed that many vulnerabilities were detected as early as the requirement 

phase, underscoring the importance of early security integration. Addressing these 

vulnerabilities at this stage ensures potential issues are identified before they can be exploited. 

However, attempts to fix these issues post-deployment led to various side effects, the severity 

of which varied by case, resulting in increased development or fixing costs, consuming 

additional resources and time, and introducing new risks and unforeseen challenges. The 

findings emphasize the necessity of incorporating security measures from the initial stages of 

system design. By addressing vulnerabilities early, organizations can prevent complications 

that arise later, minimizing costs and reducing the likelihood of introducing new risks during 

deployment. Integrating security tools and practices early promotes a more robust and resilient 

O-RAN system, allowing for comprehensive assessments and targeted solutions that are more 

effective and less disruptive. Therefore, it is advisable to fix vulnerability problems from the 

beginning of the design phase before the system is deployed, ensuring a more secure, efficient, 

and cost-effective development process. 

Adopting a proactive approach to address vulnerabilities from the beginning of a project 

is essential. This strategy prevents serious issues post-deployment and enhances ongoing 

improvement and resilience against new threats. By providing specific steps for remediation, 

these tools streamline the process of securing open-source systems, reducing the complexity 

and time required for fixes. Additionally, they facilitate the assessment of potential impacts 

before updating libraries or dependencies, ensuring that any changes do not introduce new 

vulnerabilities. This proactive approach helps maintain a secure development environment, 

fosters continuous improvement, and enhances the overall resilience of the software against 
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future threats. 

The benefits of employing multiple security tools are considerable, as they detect 

vulnerabilities and offer detailed remediation solutions, simplifying the task of addressing 

security issues early in the development process. These tools streamline the process of 

securing open-source systems by providing specific steps for remediation, reducing the 

complexity and time required for fixes. They also facilitate the assessment of potential impacts 

before updating libraries or dependencies, ensuring that any changes do not introduce new 

vulnerabilities. This proactive approach helps maintain a secure development environment, 

fosters continuous improvement, and enhances the overall resilience of the software against 

future threats. Additionally, aligning with the security specifications set forth by the WG11 

(Security) of the O-RAN Alliance is crucial. WG11 emphasizes the need for robust security 

measures in the open RAN architecture, addressing concerns such as authentication, 

authorization, data integrity, and confidentiality. By integrating multiple security tools that 

adhere to these specifications, organizations can ensure their O-RAN implementations meet 

the highest security standards, protecting against known threats and anticipating emerging 

vulnerabilities specific to the O-RAN ecosystem. Consequently, the combined use of these 

tools and adherence to WG11 guidelines significantly bolsters the security posture of O-RAN 

systems, fostering trust and reliability in these critical network components. 

Integrating CI/CD pipelines to continuously test software for security issues is a priority. 

This approach catches problems early and provides immediate feedback, fostering a security-

first culture. Integrating these tools with CI/CD pipelines will facilitate continuous security 

testing and immediate feedback for developers, enhancing the security of open-source 

systems. Utilizing advanced automated tools for real-time vulnerability scanning and 

remediation throughout the software development lifecycle is essential. These tools should 

work seamlessly together, providing unified dashboards for streamlined monitoring and 

management of security issues. Enhancing machine learning capabilities within these tools 
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can improve the accuracy of vulnerability predictions and prioritization based on potential 

impact, optimizing resource allocation. 

Leveraging machine learning to predict and prioritize vulnerabilities based on impact is 

critical. This enables efficient resource use and proactive threat management. Additionally, 

enhancing machine learning capabilities within these tools can improve the accuracy of 

vulnerability predictions and prioritization based on potential impact, optimizing resource 

allocation. It is also crucial to extend the scope of security tools to address emerging 

technologies and architectures, such as serverless computing and microservices, to ensure 

comprehensive threat mitigation. 
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