

電資學院外國學生專班(iEECS)
International Graduate Program in Electrical Engineering

and Computer Science (iEECS)

Master Thesis

Enhancing Security in O-RAN through Secure

Software Development Lifecycle Analysis:

A Comprehensive Study

Researcher: Nattapol Raksasook

Advisor: Shiang-Jiun Chen, Ph.D.

July 2024

National Taipei University of Technology

Thesis Verification Forni

\Ve hereby recommend ihat thesis submitted by Nattapol
Raksasook entitled 'Enhancing Security in O-RAN through
Secure Software Development Lifecycle Analysis:
A Comprehensive Study' be accepted as fulfilling ll1c
thesis requirement for the Master Degree of the National
Taipei University of Technology.

Thesis committee:

Adviser: $/,,,; � "J -J,�� f t.v,.

Graduate Chair:
�ja/l1 -ta/tr �fia1tr

Dace OYHV20>4 (mmldd/))'yy)

i

ABSTRACT

Title: Enhancing Security in O-RAN through Secure Software Development Lifecycle

Analysis: A Comprehensive Study

Pages: 121

School: National Taipei University of Technology

Department: International Graduate Program in Electrical Engineering and Computer Science

(iEECS)

Time: July, 2024

Degree: Master

Researcher: Nattapol Raksasook

Advisor: Shiang-Jiun Chen, Ph.D.

Keywords: Open Radio Access Network (O-RAN), Secure Software Development Lifecycle

(SSDLC), Software Composition Analysis (SCA), Static Application Security Testing

(SAST), Interactive Application Security Testing (IAST), Dynamic Application Security

Testing (DAST), Penetration Testing

With the widespread adoption of the Open Radio Access Network (O-RAN) framework,

securing its components against potential security breaches has become paramount. This paper

delves into the analysis of security vulnerabilities within O-RAN components, analyzing

potential risks that might compromise the secrecy, authenticity, and accessibility of vital

assets. Utilizing a comprehensive array of security testing tools and methodologies, we

perform detailed assessments including vulnerability scanning, penetration testing, and code

analysis. By rigorously testing O-RAN components, we aim to pinpoint potential leakage

points and security flaws. We then suggest effective remediation strategies and mitigation

techniques to address these identified vulnerabilities. By employing sophisticated security

assessment tools, we aim to enhance O-RAN security practices, ensuring the resilience and

ii

reliability of O-RAN components against new threats. This research offers valuable insights

into the identification, analysis, and resolution of security vulnerabilities within O-RAN,

contributing towards fortifying and enhancing the resilience of the O-RAN ecosystem.

iii

Acknowledgments

The successful completion of this project marks a significant milestone in my personal

and academic journey. I am profoundly grateful for the contributions of many individuals

whose support and guidance have been invaluable. Due to space constraints, I am unable to

mention everyone individually, and I apologize for any omissions.

First, I express my deepest gratitude to my esteemed advisor, Professor Shiang-Jiun Chen.

Her warm welcome to international students like myself, coupled with her unwavering support

and insightful advice on various aspects of living abroad, adapting to a new environment,

studying, gaining work experience, and navigating the intricacies of this project, have greatly

enhanced the quality of my work and facilitated a smooth progression.

I sincerely appreciate my lab members, particularly Mr. Yu-Xiang Chen, for his expert

advice on the installation of both Non-RT RIC and Near-RT RIC in O-RAN, and for his

consistent assistance in resolving issues that arose during the installation process.

Lastly, I am deeply thankful to my family for their constant encouragement and support.

Their unwavering belief in me has been the driving force behind my academic endeavors.

In conclusion, the success of this research is attributed to the collective efforts of all the

individuals mentioned. I am profoundly indebted to everyone, including those not mentioned,

for their invaluable assistance and support, which have been instrumental in the success of

this project.

iv

Table of Contents

ABSTRACT .. i

Acknowledgments .. iii

List of Tables ... vi

List of Figures .. vii

Chapter 1 Introduction ... 1

Chapter 2 Background .. 6

2.1 O-RAN ALLIANCE .. 6

2.2 O-RAN Software Community (OSC) .. 8

2.3 O-RAN Architecture .. 10

2.4 O-RAN Components .. 12

2.4.1 SMO (Service Management and Orchestration Framework) 12

2.4.2 Non-RT RIC (Non Real Time RAN Intelligent Controller) 15

2.4.3 Near-RT RIC (Near Real Time RAN Intelligent Controller) 19

2.4.4 O-CU (Open Central Unit) .. 25

2.4.5 O-DU (Open Distributed Unit) ... 27

2.4.6 O-RU (Open Radio Unit) .. 30

2.4.7 O-Cloud ... 32

2.5 O-RAN Interfaces .. 33

2.5.1 3GPP interfaces ... 33

2.5.2 O-RAN interfaces .. 35

2.6 SSDLC and Security Testing Methods ... 36

Chapter 3 Implementation .. 39

3.1 Environment Setup ... 39

3.1.1 Non-RT RIC Setup Process ... 41

v

3.1.2 Near-RT RIC Setup Process .. 42

3.2 Testing Process ... 43

Chapter 4 Results Analysis and Demonstration ... 50

4.1 Non-RT RIC ... 50

4.1.1 SCA ... 50

4.1.2 SAST ... 61

4.1.3 IAST .. 72

4.1.4 DAST .. 76

4.1.5 Pentest ... 81

4.2 Near-RT RIC .. 85

4.2.1 SCA ... 85

4.2.2 SAST ... 86

4.2.3 IAST .. 91

4.2.4 DAST .. 92

4.2.5 Pentest ... 95

4.3 Demonstration .. 101

4.3.1 OpenVAS: ICMP Timestamp Disclosure .. 101

4.3.2 Kube-hunter: Kubernetes Version Disclosure ... 104

Chapter 5 Conclusion and Future Work ... 109

References .. 112

vi

List of Tables

Table 1: SMO risks in O-RAN ... 14

Table 2: Non-RT-RIC risks ... 17

Table 3: Near-RT-RIC risks .. 23

Table 4: Software Requirements .. 40

Table 5: Hardware Requirements ... 41

Table 6: Security Testing Methods Across SSDLC .. 44

Table 7: Security Analysis Tools .. 44

Table 8: CVSS Severity Score Ranges ... 48

Table 9: Severity Description ... 51

Table 10: OWASP Dependency Check Results and Solutions ... 53

Table 11: Mend.io Results from Non-RT RIC ... 59

Table 12: Codacy Total Results from Non-RT RIC ... 62

Table 13: Codacy Results Focus Security Category from Non-RT RIC 62

Table 14: Aikido Total Results from Non-RT RIC ... 65

Table 15: SonarQube Security Results from Non-RT RIC .. 70

Table 16: OpenVAS Total Results from Non-RT RIC ... 74

Table 17: Nessus Total Results from Non-RT RIC .. 77

Table 18: Metasploit with Nmap Integration Results Details and Solutions 82

Table 19: Aikido Total Results from Near-RT RIC .. 87

Table 20: OpenVAS Total Results from Near-RT RIC ... 91

Table 21: Nessus Total Results from Near-RT RIC ... 92

Table 22 Tool Alignment with SSDLC Phases for O-RAN ... 98

vii

List of Figures

Figure 1: The structure of the O-RAN Alliance Technical Steering Committee 7

Figure 2: Architecture of O-RAN ... 11

Figure 3: Non-RT RIC Reference Architecture .. 16

Figure 4: Near-RT RIC Internal Architecture ... 22

Figure 5: Testing Focus in O-RAN Architecture .. 39

Figure 6: The Installation Results of Non-RT RIC .. 42

Figure 7: The Installation Results of Near-RT RIC .. 42

Figure 8: Secure Software Development Lifecycle (SSDLC) ... 43

Figure 9: OWASP Dependency Check Total Results from Non-RT RIC 52

Figure 10: OWASP Dependency Check CVE Results Categorize by Severity 53

Figure 11: Embold Total Results from Non-RT RIC ... 67

Figure 12: SonarQube Total Results from Non-RT RIC .. 69

Figure 13: Nikto Total Results from Non-RT RIC ... 74

Figure 14: Trivy Total Results from Non-RT RIC ... 78

Figure 15: Trivy CVE Results Categorize by Severity from Non-RT RIC 79

Figure 16: Metasploit with Nmap Integration Total Results from Non-RT RIC 81

Figure 17: Kube-hunter Total Results from Non-RT RIC .. 84

Figure 18: OWASP Dependency Check Total Results from Near-RT RIC 85

Figure 19: Embold Total Results from Near-RT RIC .. 89

Figure 20: SonarQube Total Results from Near-RT RIC ... 90

Figure 21: Trivy Total Results from Near-RT RIC... 94

Figure 22: Trivy CVE Results Categorize by Severity from Near-RT RIC 94

Figure 23: Metasploit with Nmap Integration Total Results from Near-RT RIC 96

Figure 24: Kube-hunter Total Results from Near-RT RIC ... 97

viii

Figure 25: OpenVAS Vulnerability Scan Results Before Remediation 101

Figure 26: iptables Rules for Dropping ICMP Timestamp Requests and Replies 102

Figure 27: ICMP Timestamp Reply Testing Results .. 102

Figure 28: ICMP Timestamp Request Testing Results ... 102

Figure 29: OpenVAS Vulnerability Scan Results After Remediation 103

Figure 30: Kubernetes API Server Configuration with Debugging Handlers Disabled 106

Figure 31: Kube-hunter Vulnerability Scan Results After Remediation 107

1

Chapter 1 Introduction

The rapid evolution of the telecommunications industry and the growing demand for

seamless connectivity have been driven by the rise of groundbreaking technologies like 5G

networks [1]. As the future of cellular telecommunication advances, 5G is set to transform

how we connect and engage with the digital world. Central to this transformation is the Open

Radio Access Network (O-RAN) [2], which represents a significant shift in network

architecture. O-RAN's open and interoperable design allows for greater flexibility and

innovation in 5G deployments, offering benefits such as enhanced network security, reduced

costs, and the ability to accommodate a broader range of suppliers. This paradigm shift is

expected to drive advancements across various sectors, from telecommunications to IoT

applications, solidifying O-RAN's role as a cornerstone of future 5G infrastructure. By

leveraging software-defined principles, virtualization, and disaggregation, O-RAN empowers

operators to realize the full potential of 5G by offering greater flexibility, scalability, and cost-

efficiency compared to traditional proprietary systems. This architectural transformation

enables operators to optimize network deployments, enhance service delivery, and

accommodate a variety of use cases that require rapid and responsive connectivity.

O-RAN utilizes the principles of Software Defined Networking (SDN) and Network

Function Virtualization (NFV) to enhance flexibility, scalability, and cost-effectiveness within

the radio access network sector. This is accomplished by separating hardware from software,

O-RAN disaggregates the traditional monolithic base station into smaller, interoperable

functional modules, while SDN provides a centralized, software-defined control plane for

dynamic management and orchestration. NFV enables the virtualization of network functions,

allowing for efficient resource allocation and rapid deployment of virtualized functions.

Together, SDN, NFV, and O-RAN enable operators to build a flexible, agile, and cost-effective

infrastructure that supports diverse 5G use cases and fosters innovation in the

2

telecommunications industry [3].

Open Radio Access Network (O-RAN) [2] architecture is designed to revolutionize

the RAN industry, making it more open, adaptable, and intelligent. Security analyses of O-

RAN highlight its architectural blueprint, risk areas, threat actors, and potential threats,

emphasizing the need for increased security measures. These analyses address vulnerabilities,

such as the communication interface between network controllers, and propose mitigation

strategies. Additionally, they explore the security and privacy challenges posed by Open RAN,

discuss relevant standardization efforts, and emphasize the importance of secure design. The

virtualized and open nature of O-RAN introduces new risks, requiring comprehensive risk

assessments, security analyses, and testing to ensure information security. Overall, these

studies stress the significance of prioritizing security to ensure the future security and

sustainability of O-RAN networks.

The O-RAN interface [4] refers to the connection and interaction between different

network controllers within the architecture. These controllers are responsible for managing

and coordinating various functions and components of the RAN. In O-RAN, the network

controllers play an essential role in enabling communication between different elements of

the RAN, such as base stations, virtualized network functions, and centralized management

systems. They ensure proper coordination and control of the RAN operations, including the

management, configuration, and optimization of radio resources. The interface for

communication between these network controllers is An indispensable element within the O-

RAN framework. It facilitates the exchange of control signals, management information, and

data among the controllers. This interface allows them to collaborate and coordinate their

actions to ensure seamless operation and efficient management of the RAN.

However, the communication interface can also be a potential point of vulnerability if

not properly secured [5]. An attacker who gains unauthorized access or manipulates the

communication interface may disrupt the coordination between network controllers,

3

compromise the security and privacy of the information being exchanged, or inject malicious

commands or data into the system. To address these security concerns, it is important to

analyze and identify potential vulnerabilities and threats associated with the communication

interface. This includes evaluating the robustness of the protocols, encryption mechanisms,

authentication, and access control measures employed in the interface. By understanding these

vulnerabilities, researchers, and practitioners can propose appropriate mitigation strategies

and security enhancements to protect the communication interface and ensure the

comprehensive security of the O-RAN architecture.

Establishing standards [6] is crucial for both the advancement and effective

deployment of O-RAN architectures. It involves the establishment of common protocols,

interfaces, and specifications that facilitate interoperability and compatibility among various

components and vendors within the O-RAN ecosystem. Standardization efforts aim to ensure

that O-RAN implementations from different vendors can seamlessly work together, fostering

a more open and competitive market. By adhering to common standards, O-RAN deployments

become more flexible, allowing network operators to combine components from different

vendors, promoting innovation, and minimizing vendor lock-in.

From a security perspective, standardization efforts also address security

requirements, guidelines, and best practices specific to O-RAN. These security standards aim

to define security mechanisms, protocols, and procedures to protect the O-RAN infrastructure

from various threats and vulnerabilities. Standardization organizations like the O-RAN

Alliance [7], work collaboratively to create and refine these protocols for security. They

engage industry stakeholders, including network operators, equipment vendors, researchers,

and regulators, to ensure a comprehensive and effective approach to security.

By adhering to security standards, O-RAN deployments can benefit from proven

security measures, as well as ongoing advancements and updates. Standardization also

facilitates the development of security certification processes, enabling network operators to

4

assess and verify the security posture of O-RAN solutions and make informed procurement

decisions. Overall, standardization efforts in the context of O-RAN are essential for

establishing a common framework that ensures interoperability, flexibility, and security. They

provide a foundation for secure and harmonious collaboration among different components,

vendors, and stakeholders within the O-RAN ecosystem.

Security risks in O-RAN [8] refer to the potential vulnerabilities and threats that arise

from the adoption and implementation of this innovative mobile network infrastructure. O-

RAN introduces a software-defined and virtualized network architecture, which offers

benefits such as increased flexibility and interoperability. However, it also brings along

specific cybersecurity risks that organizations need to address to protect and secure their

network systems.

One significant security risk in O-RAN is related to network vulnerabilities. The use

of open interfaces and APIs in O-RAN's design can expose the network to a wider range of

cyber threats [9]. Malicious actors can target vulnerabilities in software components or exploit

insecure APIs to gain unauthorized network access. These attacks can lead to various

consequences, including breaches of data security, compromising data integrity, or launching

many other cyberattacks.

While O-RAN presents several advantages, including increased flexibility and cost-

effectiveness in mobile network infrastructure, it also brings along specific cybersecurity risks

that organizations need to address. The open nature of O-RAN, with its software-defined and

virtualized network architecture, creates a more interconnected and accessible environment,

which can potentially expose the network to a broader spectrum of cyber threats.

The open and interoperable design of O-RAN facilitates innovation and flexibility but

also introduces significant security vulnerabilities. The separation of network components and

the dependency on software-driven functionalities can create multiple potential attack points

if not adequately protected. Integrating security measures into the Software Development

5

Lifecycle (SDLC) from the initial design phase is essential for mitigating these risks.

Implementing a Secure Software Development Lifecycle (SSDLC) ensures that security best

practices are embedded throughout the development process, from design to deployment and

maintenance. This strategy not only aids in the early detection and resolution of potential

security issues but also embeds security as a fundamental component of the O-RAN

architecture, thereby strengthening the network against potential threats and attacks.

The aim of this paper is to investigate the security leakage of O-RAN and explore the

effectiveness of robust security testing tools in mitigating such leaks. By examining the

current state of O-RAN security and evaluating the capabilities of advanced security testing

tools, we can develop an all-encompassing framework to strengthen the security posture of O-

RAN deployments. This framework will not only protect against potential leaks but also

strengthen the overall resilience of the telecommunications infrastructure, instilling

confidence in the viability and security of O-RAN networks.

Through this research, our objective is to enrich the existing knowledge base on O-

RAN security while offering actionable recommendations tailored for operators, vendors, and

regulatory bodies to strengthen the security of their O-RAN deployments. By proactively

addressing security leakage through the application of robust security testing tools, we can

enable the widespread adoption of O-RAN while maintaining the integrity and confidentiality

of essential network infrastructure in the face of evolving security threats.

6

Chapter 2 Background

2.1 O-RAN ALLIANCE

The O-RAN Alliance [7] , also known as the Open Radio Access Network Alliance, is

an international industry consortium established in 2018. It aims to promote open and

interoperable standards for the Radio Access Network (RAN) within mobile

telecommunications systems. By developing open interfaces and specifications, the alliance

enables multi-vendor interoperability, fosters competition, and avoids vendor lock-in. The O-

RAN Alliance concentrates on multiple facets of RAN, including virtualization, network

intelligence, and the application of artificial intelligence and machine learning. Its goal is to

create a flexible, cost-effective, and efficient RAN architecture that supports the evolving

requirements of 5G and future mobile networks. The alliance collaborates with other

standardization bodies to ensure alignment and widespread the implementation of open RAN

standards within the industry.

The O-RAN Alliance consists of 11 work groups (WGs) and 3 focus groups (FGs).

The Technical Steering Committee (TSC) oversees the WGs responsible for O-RAN

specification work, each covering a distinct segment of the O-RAN framework. Security is of

utmost importance in the O-RAN architecture, leading to the creation of the Security Focus

Group (SFG) to manage security elements throughout the open RAN ecosystem. While focus

groups typically don't engage in O-RAN specifications, the SFG operates differently. It has

released multiple technical specifications and operates similarly to a work group (WG),

resulting in its transformation into WG11 (Security) Figure 1 [10].

7

Figure 1: The structure of the O-RAN Alliance Technical Steering Committee

The O-RAN ALLIANCE Security Work Group (WG11) [11] is actively working on

developing specifications to create a secure and interoperable open RAN system for mobile

network operators. In 2022, they elevated the Security Focus Group (SFG) to a Work Group,

underscoring their commitment to security in the design of their systems.

WG11 regularly updates the public about their progress through announcements. These

announcements outline their activities, focus areas, security controls, and timelines. Their

work is structured around four key security specifications:

1. O-RAN Security Threat Modeling and Remediation Analysis 4.0: This entails a risk-

based methodology to identify and mitigate potential threats, facilitating the creation

of a secure O-RAN framework.

2. O-RAN Security Requirements Specifications 4.0: These specifications detail the

security requirements for all components of O-RAN, addressing areas such as

confidentiality, integrity, and availability protection. They include critical security

8

controls such as authentication, authorization, and the principle of least privilege

access control.

3. O-RAN Security Protocols Specifications 4.0: This specification outlines the

implementation requirements for security protocols utilized within O-RAN,

including SSH, IPSec, DTLS, TLS 1.2, and TLS 1.3.

4. O-RAN Security Tests Specifications 3.0: This documentation details the security

testing procedures necessary to validate and verify the implementation of security

functions, configurations, and protocol requirements in O-RAN. It's an essential step

toward ensuring the verifiability of O-RAN security requirements.

These security specifications are meant to ensure that O-RAN are secure, reliable, and

compliant with industry standards. WG11 updates the specifications regularly, and these

updates can be found on the O-RAN ALLIANCE website.

2.2 O-RAN Software Community (OSC)

The O-RAN Software Community (OSC) [12] is a joint effort between the O-RAN

Alliance and the Linux Foundation, with the goal of creating software for the Radio Access

Network (RAN) in the context of the telecom industry's transformation and the emergence of

5G technology. The community intends to utilize existing LF network projects, while tackling

challenges related to performance, scalability, and 3GPP alignment. Open source is seen as a

crucial means to speed up product development collaboratively and economically.

The focus of the OSC is to align with the O-RAN Alliance's open framework and

specifications, enabling industry deployment. As an emerging open-source community within

the Linux Foundation, it will develop open source software for disaggregated radio access

networks that are modular, open, smart, efficient, and flexible.

9

These following are the O-RAN software version released by OSC [13]:

 Amber (A) Release : (Nov 2019)

 Bronze (B) Release : (Jun 2020)

 Cherry (C) Release : (Dec 2020)

 D release : (Jul 2021)

 E Release : (Dec 2021)

 F Release : (Jun 2022)

 G Release : (Dec 2022)

 H Release : (Jun 2023)

 I Release : (Dec 2023)

 J Release : (Jun 2024)

 K Release : (Dec 2024)

The O-RAN Software Community (OSC) plays a crucial role in strengthening the

security posture of the O-RAN ecosystem. As a collaborative open-source community, OSC

faces various security threats commonly found in the software development landscape [14].

These threats encompass cybersecurity risks, supply chain vulnerabilities, interoperability

challenges, and the potential for malicious contributions. OSC actively addresses these threats

by adopting industry best practices, including regular code audits, vulnerability management,

and secure development guidelines [15]. They emphasize supply chain security by validating

code contributions and scrutinizing third-party dependencies to minimize the risk of

compromised software components. Furthermore, OSC promotes awareness and education

among its community members to enhance their ability to identify and mitigate security

vulnerabilities.

10

The OSC's commitment to security extends to interoperability and integration

concerns within the O-RAN ecosystem. While interoperability is a key objective, it can

introduce risks if not managed effectively. OSC conducts thorough testing and validation to

guarantee the compatibility and security of software integrations, thus reducing the risk of

vulnerabilities arising from misconfigurations or incompatibilities [16]. By addressing these

security challenges comprehensively, OSC strives to create a robust and secure O-RAN

ecosystem, making it a safer environment for telecommunications network deployment and

operation. To stay current with OSC's evolving security practices and efforts in addressing

security threats, it is advisable to consult their latest resources and official documentation.

2.3 O-RAN Architecture

The architecture of O-RAN represents a revolutionary transformation of traditional

Radio Access Networks by embracing key principles such as openness, virtualization,

intelligence, interoperability, flexibility, cost-effectiveness, and innovation. By emphasizing

openness and promoting vendor-neutral interfaces, O-RAN enables network operators to

diversify their RAN components, leading to healthy competition and driving innovation in the

industry. The introduction of virtualization further enhances the architecture, decoupling

software functions from hardware and providing the flexibility to deploy network functions

on commodity hardware or in the cloud. This virtualized approach ensures efficient resource

utilization and scalability, enabling operators to adapt their networks quickly to meet evolving

demands.

From Figure 2[17] the main part of O-RAN framework is the RAN Intelligent

Controller (RIC) [18], which adds intelligence and real-time optimization capabilities to the

network. The RIC dynamically manages RAN functions, optimizing resource allocation, and

enhancing overall network performance. Standardized interfaces facilitate seamless

communication and coordination between different RAN components, streamlining network

11

integration and simplifying upgrades. The interoperability achieved through these interfaces

ensures that diverse components from multiple vendors can work together cohesively.

This level of flexibility and interoperability, combined with O-RAN's emphasis on

cost-effectiveness, empowers operators to make optimal infrastructure investments and reduce

operational expenses. Moreover, the focus on innovation fosters collaboration and opens the

door for third-party developers to contribute to the ecosystem, driving the creation of cutting-

edge technologies and services. Ultimately, the O-RAN architecture empowers network

operators to deliver high-quality services, adapt swiftly to changing demands, and embrace a

new era of wireless network deployments [19].

Figure 2: Architecture of O-RAN

O-RAN is also a universal and standardized framework for mobile

telecommunications networks, closely aligned with open source and open interface principles

[20]. It emphasizes openness, interoperability, and standardization to break down the

traditionally closed and proprietary nature of radio access networks. O-RAN promotes open

interfaces between network elements, like radio units (RUs), distributed units (DUs), and

centralized units (CUs). These open interfaces encourage collaboration between different

12

vendors, fostering interoperability and competition. Moreover, O-RAN leverages open-source

software principles, including initiatives like the O-RAN Software Community (OSC) [16],

which offers software building blocks, reference designs, and tools for developing radio

access network components. This approach not only enhances flexibility and innovation but

also contributes to lower costs, ultimately benefiting both network operators and end-users in

the mobile telecommunications industry [21].

Security threats and attacks in the realm of open source and open interface

technologies [22] resemble those encountered in any software or networked environment.

Common risks include malware and ransomware threats that can compromise systems, zero-

day exploits exploiting undiscovered vulnerabilities, DoS attacks overwhelming systems,

supply chain attacks compromising trusted software sources, man-in-the-middle attacks

intercepting and altering data, data breaches revealing sensitive information, authentication

and authorization bypass vulnerabilities, code injection attacks potentially leading to system

compromise, web application vulnerabilities like XSS and CSRF, and brute force attacks

exploiting weak configurations. Vigilance, patching, strong security measures, and proactive

monitoring are essential to mitigate these risks [23].

2.4 O-RAN Components

2.4.1 SMO (Service Management and Orchestration Framework)

Service Management and Orchestration (SMO) is a crucial element within O-RAN

framework [24]. It is responsible for orchestrating and managing various services and

resources in the radio access network. SMO's primary functions include service orchestration,

resource management, automation of network tasks, service assurance, and ensuring

interoperability between different network components and vendors. By performing these

tasks, SMO helps optimize resource utilization, reduce operational costs, and enhance service

13

quality, making it an essential component in the development of open and efficient

telecommunications networks, particularly in the 5G and beyond 5G era. The essential

capabilities of the SMO that provide RAN support in O-RAN include:

• FCAPS* interface to O-RAN Network Functions

• Non-RT RIC for RAN optimization

• O-Cloud Management, Orchestration and Workflow Management

(*FCAPS = Fault, Configuration, Accounting, Performance, Security)

The SMO delivers these services via 4 primary interfaces to the O-RAN elements [17].

 - A1 Interface: Connects the Non-RT RIC in the SMO to the Near-RT RIC for

RAN optimization.

 - O1 Interface: Links the SMO to the O-RAN network functions for FCAPS

support.

 - In the hybrid model, Open Fronthaul M-plane interface: Connects the SMO to

the O-RU for FCAPS support.

 - O2 Interface: Connects the SMO to the O-Cloud to provide platform resources

and manage workloads.

Ensuring the security of the Service Management and Orchestration (SMO)

component within the O-RAN architecture is crucial for creating a self-regulating network

environment. This is crucial for maintaining the overall performance of O-RAN and protecting

subscriber data and privacy. Insufficient authentication and authorization protocols for both

external and internal SMO connections can lead to unauthorized access. This could

compromise sensitive Open RAN information and enable malicious entities to interfere with

network operations. O-RAN's foundation in RAN virtualization brings deployment-specific

security challenges related to virtualization and software-defined networking, including issues

with VM migration, instantiation, hypervisor, orchestration, and SDN controller security [25].

14

Furthermore, in O-RAN's cloud-native deployment, the shared BBU pool introduces privacy

and data access risks. While O-RAN offers flexible services, it's crucial to consider these

security challenges in the context of its open and virtualized approach.

DoS attacks or a surge in traffic can lead to overloads, impacting the accessibility of

SMO data and functions. Vulnerabilities in orchestrator configurations, access controls, and

isolation measures can be exploited by attackers. In scenarios where a single orchestrator

oversees multiple virtual machines and containers that are taken care of by many teams and

possess varying levels of sensitivity, improper user and group access permissions could allow

an attacker or negligent user to disrupt the operation of other virtual machines or containers

under the orchestrator's management. Additionally, there is a risk of harmful network traffic

emanating from various virtual machines or containers that share the same virtual networks,

especially when virtual machines or containers with varying sensitivity levels utilize the same

virtual network, leading to insufficient isolation and potentially compromising network

security. Proper security measures and access control are essential to mitigate these risks

which are described in Table 1 [8].

Table 1: SMO risks in O-RAN

Threat Description

Lack of or incorrect

authentication

Improper or missing authentication on SMO functions can

be exploited to gain unauthorized access to the SMO and its

functionalities. [26].

Denial-of-Service attacks Executes excessive load or Inundating DoS attacks on SMO

[26].

Security concerns related to

orchestration

Takes advantage of weak orchestrator configuration,

insufficient access control, and poor isolation [26].

15

2.4.2 Non-RT RIC (Non Real Time RAN Intelligent Controller)

Non Real Time RAN Intelligent Controller (Non-RT RIC) [27] is a vital component

within the O-RAN framework, situated in SMO layer, facilitating intelligent optimization of

RAN. Its primary role is to offer guidance based on established policies, manage ML models,

and enrich data for the Near-RT RIC through A1 interface. Additionally, Non-RT RIC can

carry out intelligent management of radio resources at non-real-time periods, typically

exceeding 1 second, and leverage data analysis and artificial intelligence and machine learning

methods to identify improvement measures. It interfaces with SMO services for example data

acquisition and provisioning services, as well as the O1 and O2 interfaces, to access and

exchange necessary data for RAN enhancement.

Non-RT RIC consists of 2 sub-functions [17]:

 Non-RT RIC Framework: This functionality is internal to the SMO Framework,

logically terminating the A1 interface and exposing the necessary services to rApps

via its R1 interface.

 Non-RT RIC Applications (rApps): These are modular applications that utilize the

functionality provided by the Non-RT RIC Framework to carry out RAN optimization

and other functions. The services exposed to rApps through the R1 interface allow

them to gather information and initiate actions (e.g., policies, re-configuration) via the

A1, O1, O2, and Open FH M-Plane related services.

The Non-RT RIC Framework is responsible for exposing all necessary functionalities to the

rApps, whether these functionalities originate from the Non-RT RIC Framework itself or the

SMO Framework.

From Figure 3 [27] explains the reference architecture of the Non-RT RIC a

component of the SMO framework. There are three categories of logical functionalities within

the Non-RT RIC framework and SMO framework.

16

 Functions Anchored Inside the Non-RT RIC Framework:

These functions are integral to the Non-RT RIC framework, closely tied to its core

operations, and responsible for core RAN optimization tasks. This is indicated in solid

blue box.

 Functions Anchored Outside the Non-RT RIC Framework:

These functions exist externally but interact with the Non-RT RIC through defined

interfaces, providing complementary services like data collection from O-RAN nodes.

This is indicated in solid orange box.

 Non-Anchored Functions:

These functions operate independently, often without direct integration with the Non-RT

RIC, but can still influence or be influenced by RAN behavior within the O-RAN

architecture. This is indicated in dashed line box.

Figure 3: Non-RT RIC Reference Architecture

rApps within the Non-RT RIC framework [28] can impact critical functions like

AI/ML model creation, A1 policy administration, data improvement, and network

configuration optimization, which can be exploited for purposes like degrading network

17

performance, initiating DoS attacks, and intercepting enrichment data such as UE site, track,

directions, and GPS information. These rApps share similarities with xApps and can influence

the behavior of specific cells, groups of UEs, or individual UEs, leading to attacks similar to

xApps. These attacks can arise from malicious rApps, vulnerable rApps, misconfigured

rApps, compromised rApps, or conflicting rApps that are summarized in Table 2 [8]. In

addition to these familiar risks, two additional vulnerabilities specific to Non-RT RIC are

identified.

Table 2: Non-RT-RIC risks

Threat Description

DDoS attack An attacker breaches the component to initiate attacks or

reduce efficiency [26].

Sniffing attacks through the

A1 interface for UE

identification

An attacker conducts UE sniffing in the Non-RT RIC

through the A1 interface or via the R1 interface using rApps

to identify UE. For instance, a rApp could potentially be

used as a "sniffer" for UE identification [26].

Vulnerabilities and

misconfiguration in rApps

Vulnerabilities can potentially exist in any rApp if it is

sourced from an untrusted or unmaintained origin. An

attacker exploits these vulnerabilities and

misconfigurations in such rApps to disrupt the provided

network service and potentially take over another rApp or

the entire Non-RT RIC [2], [26], [29].

Weak authentication and

authorization in rApps

If software vulnerabilities are present in web front-end or

REST API interfaces or lack proper authentication and

authorization mechanisms, an attacker could exploit these

weaknesses to bypass controls and access the rApp,

18

impersonating a tenant. This would allow the attacker to

manipulate configurations, access logs, and implement

backdoors [26], [29], [30].

Compromising isolation in

rApps

Attackers can breach rApp separation and escape

restrictions. This allows them to conduct an auxiliary route

attack, extracting data from co-hosted within a common

asset [26].

Conflicts in rApps Conflicting directly, indirectly, and implicitly either

inadvertently or with malicious intent impacts non-realtime

Open RAN system functions like managing carrier license

schedules, optimizing energy usage, and handling

subscriptions. This can result in reduced efficiency or even

Denial of Service attacks. [26].

Untrusted or poorly maintained sources can introduce vulnerabilities [31] into any

rApp, potentially leading to disruptions in network services and even compromising the entire

Non-RT RIC. By taking advantage of these weaknesses, attackers might manipulate

information communicated over the A1 interface and extracted crucial data, or take control of

other rApps. Furthermore, attackers can exploit rApp isolation to escape from confinement

and access data from co-hosted rApps. Unpermitted entry opens avenues for exploiting

vulnerabilities [32] in additional rApps or components of Open RAN, facilitating actions like

intercepting and spoofing network traffic and launching DoS attacks. Attackers may also

infiltrate the Non-RT RIC via A1 interface or O1 interface or outside entities via SMO to

initiate attacks or reduce efficiency.

rApps can create conflicts due to their launch by different vendors with varying

objectives like carrier license management or energy efficiency measures. These conflicts can

manifest as direct, indirect, or implicit, according to the specific factors and their effects.

19

Direct conflicts involve multiple rApps requesting the same parameter change, indirect ones

occur when different parameter changes yield opposing effects, and implicit conflicts arise

when parameter changes impact network states. These conflicts can result in network

performance degradation and instabilities, and they are challenging to mitigate due to hidden

dependencies. Additionally, there's a vulnerability risk if rApp management interfaces are

exposed to web front-ends [33] or REST APIs with software interface vulnerabilities [34] or

inadequate authentication and authorization, potentially allowing attackers to gain

unauthorized access, pose as tenants, alter configurations, access logs, or establish backdoors.

2.4.3 Near-RT RIC (Near Real Time RAN Intelligent Controller)

Near Real Time RAN Intelligent Controller (Near-RT RIC) [35] plays a crucial role in

near-real-time management and optimization of E2 Nodes' functions and resources, utilizing

accurate data collection and actions with control loops functioning within 10 milliseconds to

1 second. It contains one or more xApps utilizing the E2 interface for gathering near real-time

data, including individual user or cell-based information, and provide value-added services.

The Near-RT RIC's control over E2 Nodes is guided by policies and enrichment data from the

Non-RT RIC via the A1 interface. This allows the Near-RT RIC to produce RAN analytics

information, which can be accessed through the Y1 interface. The distribution of Radio

Resource Management (RRM) functions between the Near-RT RIC and the E2 Node is

determined by the E2 Service Model. This model specifies the capabilities of the E2 Node and

outlines the specific RRM responsibilities for each function. In the event of a Near-RT RIC

failure, basic services will continue to operate; however, value-added services that depend on

the Near-RT RIC may experience interruptions.

xApps are essential to the Near-RT RIC infrastructure in telecommunications networks

[36]. These software applications collect and process fine-grained, near real-time data from

network elements, like user equipment and base stations, enabling real-time network control

20

and optimization. xApps operate based on predefined policies, providing value-added services

like dynamic network management, load balancing, and traffic steering. They respond

dynamically to changing network conditions, ensuring optimal performance. xApps are

customizable, allowing network operators to develop specialized solutions, and they work in

conjunction with the RIC architecture to enhance network efficiency, quality of service, and

user experience.

There are many functions in Near RT RIC. The details are shown below and these

functions architecture are shown in Figure 4 [35]:

 Database, and related SDL (Shared Data Layer) services, which enables

reading and writing of RAN/UE information and other data necessary to

accommodate particular use cases;

 xApp subscription management, this function consolidates subscriptions

from multiple xApps and facilitates the unified distribution of data to these

xApps;

 Conflict mitigation, which addresses potentially intersecting or conflicting

demands from multiple xApps;

 Messaging infrastructure, this function enables message interaction among

internal functions within Near-RT RIC;

 Security, this function sets up the security framework for xApps.;

 Management Function:

- Provision of fault management, configuration management, and

performance management services to the SMO.

- Implementation of logging, tracing, and metrics collection to capture,

monitor, and collect the status of Near-RT RIC internals, with the

ability to transfer this data to an external system for further

evaluation.

21

 Interface Termination:

- E2 interface termination from an E2 Node.

- A1 interface termination from the Non-RT RIC.

- O1 interface termination from the SMO.

- Y1 interface termination from a Y1 consumer.

 Functions hosted by xApps, which enable services to be executed at the

Near-RT RIC, with the results being sent to E2 Nodes through the E2

interface;

 API Enablement A function that facilitates operations pertaining to the Near-

RT RIC API, encompassing tasks such as managing the API repository and

registry, handling authentication, enabling discovery, and supporting generic

event subscriptions;

 AI/ML support:

- Pipeline management, training processes, and performance monitoring for

xApps.

 xApp Repository Function:

- Selecting xApps for A1 message routing based on A1 policy types and

operator policies;

- Managing access control of A1-EI types for xApps according to operator

policies.

22

Figure 4: Near-RT RIC Internal Architecture

xApps possess the ability to influence the behavior of specific cellular elements,

groups of user equipment (UEs), and individual UEs. Security concerns arise from various

sources, including harmful xApps, xApps with security weaknesses, improperly configured

xApps, breached xApps, and xApps that have conflicts [26]. These threats are significant

because xApps are engineered for executing intelligent operations. related to radio resource

management for cellular and device entities. A compromised xApp can potentially take control

of cells or devices, enabling tracking of specific consumers within the network. Moreover,

malicious xApps can access priority information via the A1 interface, compromising location

privacy and service prioritization, ultimately leading to compromised RAN (Radio Access

Network) performance and privacy violations that are summarized in Table 3 [8].

23

Table 3: Near-RT-RIC risks

Threat Description

Tracking the location of User

Equipment (UE) and altering

UE priority caused by

malicious xApps

XApps have the capacity to impact the behavior of

individual cells, clusters of User Equipments (UEs), and

particular UEs for purposes such as subscriber tracking or

adjusting UE priority levels [26], [29].

Identification of User

Equipment (UE) facilitated

by malicious xApps

Malicious xApps can manipulate the identification of User

Equipments (UEs) and monitor their locations. For

instance, an xApp might serve as a 'sniffer' to identify UEs

[26], [29], [30].

Vulnerabilities and

misconfigurations within

xApps

Potential vulnerabilities may be present in any xApp

sourced from an untrusted or unmaintained origin.

Attackers can exploit these vulnerabilities and

misconfigurations in xApps with the intention of disrupting

the current network service and possibly taking over

another xApp or all of near-RT RIC [2], [26], [29].

Conflicts in xApps Contradictory xApps, whether deployed inadvertently or

with malicious intent, can impact the operations of the O-

RAN, including management of mobility, admission

controls, bandwidth allocation, and load distribution,

leading to reduced performance. Additionally, a malicious

entity could exploit a harmful xApp to deliberately activate

RRM actions that contradict the internal decisions of O-

gNB, with the aim of causing a Denial-of-Service (DoS)

situation. [26], [29].

24

Undermining the isolation of

xApps

By undermining xApp isolation, an attacker can escape

xApp confinement, enabling the execution of a side-

channel attack that could facilitate the extraction of data

from co-located xApps within a common resource pool

[26].

Malicious xApps can serve as tools for unauthorized User Equipment (UE)

identification [37], potentially leading to adverse impacts on Radio Access Network (RAN)

performance and subscriber privacy violations. This risk arises because the A1 interface can

pinpoint specific UEs in the network via their unique identifiers, creating correlations among

anonymized UE identities between RAN nodes. Consequently, malicious actors could track

UE locations and alter UE priorities, posing a significant threat, especially when identifying

and tracking important subscribers like Very Important Persons (VIPs). E2 signaling channels

are more prone to exposing UE identifiers compared to A1, primarily because of the Near-RT

conditions inherent in E2. Furthermore, these malicious xApps might tamper with Service

Level Agreement (SLA) specifications and priority levels, potentially conflicting with Near-

RT-RIC decision processes, leading to breaches of specified execution boundaries and SLAs.

Vulnerabilities in xApps pose significant risks, as they can originate from untrusted or

poorly maintained sources [38]. Exploiting these vulnerabilities can lead to compromising

other xApps or even the entire Near-RT RIC, typically with the intention of impairing

performance, such as through Denial of Service (DoS) attacks. Attackers might also tamper

with information exchanged across A1 or E2 interfaces, enabling the extraction of sensitive

information. Additionally, The mechanisms for segregation for xApps may possibly be altered

to escape confinement and access data from concurrently hosted xApps. Unauthorized access

chances to take advantage of weaknesses in other xApps or Open RAN components., enabling

network traffic interception, spoofing, and service degradation (DoS attacks). The fact that

xApps are open-source makes their weaknesses more apparent to potential adversaries,

25

whereas misconfigurations and incompatibilities represent inherent risks in the O-RAN

ecosystem.

Lack of distinct functional separation between Near-RT RIC with Open RAN Next

Gen Node B (O-gNB) can result in disputes, both unintentional and malicious, including

conflicts within xApps. These conflicts can affect decisions related to radio resource

management, impacting critical Open RAN functions like management of mobility, admission

controls, bandwidth regulation, and load distribution may lead to potential performance

deterioration. Preserving isolation for xApps is crucial to ensure the independent functioning

of O-RAN services and the precise decision-making of Near-RT-RIC. However, this isolation

can be undermined by weaknesses in the system, deduction of access information through

shared resources, or deceptive authentication attempts [39], potentially allowing attackers to

subdue xApp operations.

2.4.4 O-CU (Open Central Unit)

O-CU, or Open Central Unit, is a critical component that is crucial in the radio access

network [40]. Traditionally, the Central Unit is responsible for functions like radio resource

management and coordination. However, in O-RAN, the O-CU is an open and standardized

version of the Central Unit, designed to be flexible, software-defined, and vendor-neutral. It

acts as a bridge between the Radio Unit (RU) and the Distributed Unit (DU), promoting

interoperability and openness while allowing for network virtualization and efficient, cost-

effective network management. O-CU's software-defined nature and adherence to O-RAN

Alliance specifications encourage interoperability, reduce vendor lock-in, and facilitate the

deployment of agile, 5G-ready networks.

O-CU-CP (Open Central Unit - Control Plane) and O-CU-UP (Open Central Unit -

User Plane) [41] are specific subcomponents within O-CU in O-RAN framework, each with

distinct functions:

26

2.4.4.1 O-CU-CP (Open Central Unit - Control Plane)

O-CU-CP is responsible for managing the control plane functions in the radio access

network. The control plane is primarily concerned with signaling, network management, and

control operations, such as call setup and mobility management. O-CU-CP handles these

control functions, including radio resource management, connection establishment, and

handovers. It interfaces with other network elements like the Distributed Unit (DU) and the

core network to ensure the efficient governance and administration of radio resources and

network services.

2.4.4.2 O-CU-UP (Open Central Unit - User Plane)

O-CU-UP focuses on the user plane functions within the radio access network.

Handling actual data traffic and user data packets falls under the responsibility of the user

plane, such as internet content, voice calls, or video streams. O-CU-UP manages the

processing and forwarding of user data, ensuring low-latency and high-throughput delivery of

data to and from the Radio Unit (RU). It is designed to efficiently process and transport user

data packets while minimizing delays and ensuring a high-quality user experience.

Both O-CU-CP and O-CU-UP are integral parts of the O-CU in O-RAN, working

together to manage CP and UP elements of the radio access network. These subcomponents

adhere to open standards and interfaces defined by the O-RAN Alliance, contributing to the

network's flexibility, interoperability, and cost-effectiveness while enabling innovative

solutions and promoting vendor diversity in the network ecosystem.

In an Open RAN cloud-native setup, the shared unit pool could lack adequate isolation,

potentially endangering user privacy and compromising the security of confidential

information [42]. The transparency and visibility of CU components in Open RAN, especially

with the use of eCPRI for fronthaul, make them susceptible to cyber intrusions and hacking

attempts, posing a greater risk compared to traditional fronthauls and C-RAN [43]. Although

27

uncommon, intrusions can happen through the F interface in the Mid-haul, linking the CU to

DU. These intrusions may exploit threat vectors such as service migration, offloading, or

transfer mechanisms in edge computing infrastructure hosting CU [44]. If a CU is

compromised, it can potentially impact both the fronthaul and backhaul directions using the

open interfaces of O-RAN.

O-CU (Open Central Unit) in the O-RAN architecture is susceptible to a diverse array

of security threats, including Denial of Service (DoS) and Distributed Denial of Service

(DDoS) attacks that can disrupt network services, Man-in-the-Middle attacks that compromise

data integrity, unauthorized access by intruders, malware infections, insider threats, and zero-

day vulnerabilities. Supply chain attacks, interoperability risks, and data leakage can further

endanger O-CU's security. Regulatory violations and social engineering attacks may result in

legal consequences. To safeguard O-CU, robust security measures like access controls,

encryption, intrusion detection systems, regular updates, and security awareness training are

crucial, alongside adherence to security standards and collaboration within the O-RAN

community.

Mitigating these threats is essential to protect O-CU from potential disruptions, data

breaches, and regulatory repercussions. Implementing these security measures is necessary

not only to ensure network integrity and user privacy but also to preserve trust and reliability

within O-RAN context where connections are open and interoperability is an essential

objective.

2.4.5 O-DU (Open Distributed Unit)

O-DU (Open Distributed Unit) plays a pivotal role in the transformation of traditional

radio access networks. It is designed to disaggregate and virtualize critical functions within

the network, bringing about increased flexibility and interoperability [45]. O-DU is

responsible for tasks such as protocol termination, radio resource management, and baseband

28

processing, functioning as a key bridge between the O-RU (Open Radio Unit) and O-CU

(Open Central Unit) in the network's data plane. Network operators can leverage this

separation to implement best-in-class solutions from multiple vendors, reducing vendor lock-

in and promoting innovation.

One of the key features of O-DU is its adherence to open standards and interfaces

defined by the O-RAN Alliance. These open interfaces enable seamless communication and

interoperability between O-DU and other O-RAN components, fostering collaboration and

innovation within the telecommunications industry. Additionally, O-DU supports

virtualization, allowing it to run as software on standard off-the-shelf hardware. This not only

reduces capital expenses but also enables dynamic scaling and resource allocation based on

the changing demands of the network, which is essential in the 5G era and future network

deployments.

O-DU's flexibility and adaptability are further highlighted by its ability to be deployed

in various network scenarios. It can be utilized in macrocells, small cells, and even at the

network edge, making it a versatile component suitable for diverse 5G and future network

deployment strategies. Overall, O-DU in O-RAN is a critical element in the quest for open,

intelligent, and agile radio access networks. It empowers network operators to build more

flexible, interoperable, and innovative RAN solutions, which can lead to cost savings,

enhanced network performance, and a more competitive and dynamic telecommunications

landscape.

Security risks encompass the potential consequences of security threats. They can

manifest in various forms, including data breaches where sensitive information is exposed,

leading to a loss of confidentiality. Data integrity compromises involve unauthorized

alterations or destruction of data, eroding trust in data accuracy [46]. Service disruptions, often

caused by DDoS attacks or cyber incidents, can disrupt operations, leading to downtime and

financial losses. Organizations also face financial risks associated with the costs of

29

investigating, mitigating, and recovering from security incidents, including fines, legal fees,

and compensation to affected parties. Reputation damage is a significant risk, as loss of trust

and credibility among customers, partners, and stakeholders can result in declining customer

bases and partnerships. Furthermore, non-compliance with data protection and privacy

regulations can have serious legal consequences, potentially leading to regulatory fines.

The O-DU (Open Distributed Unit) is susceptible to a variety of cyberattacks.

Distributed Denial of Service (DDoS) attacks can overwhelm the O-DU with an avalanche of

traffic, causing service disruptions and downtime. Malware attacks, such as viruses and

Trojans, can compromise the O-DU's integrity and spread across the network. Phishing attacks

target network administrators, attempting to deceive them into revealing sensitive credentials,

thereby gaining unauthorized access. Man-in-the-Middle (MitM) attacks can intercept and

manipulate communication, compromising data integrity and confidentiality. Insider threats,

stemming from individuals with access to the O-DU, pose significant risks, potentially leading

to unauthorized access or data breaches. Software exploits can take advantage of

vulnerabilities in the O-DU's software, granting attackers unauthorized control. Zero-day

attacks are particularly concerning as they exploit previously unknown flaws before patches

are available. Brute force attacks involve systematic attempts to gain O-DU access by trying

numerous username and password combinations. Data integrity and security are at risk from

interception and injection attacks. These attacks have the potential to impact network

operations and threaten security, and lead to unauthorized access, data breaches, or service

outages, emphasizing the critical need for robust cybersecurity measures to safeguard the O-

DU and the broader O-RAN network.

The impact of security threats can be wide-ranging and significant, affecting both

individuals and organizations. Financial impacts include the costs associated with

investigating, mitigating, and recovering from security incidents, along with possible legal

expenses, regulatory penalties, and reparations to affected parties. Operational impacts are

30

common and result from disruptions to normal business operations, including downtime, loss

of data, and system unavailability. Reputation damage can be severe, leading to a loss of trust

and confidence in the organization, which, in turn, can result in a reduced customer base and

fewer partnerships. In cases of intellectual property theft, the loss of sensitive information,

trade secrets, or proprietary data can have long-term consequences for an organization's

competitive advantage. The multifaceted nature of these impacts underscores the importance

of robust cybersecurity measures, proactive policies, and training to safeguard against security

threats and minimize their potential repercussions.

2.4.6 O-RU (Open Radio Unit)

The O-RU, or Open Radio Unit, serves as a cornerstone component of the network's

architecture, ushering in a new era of openness, flexibility, and innovation in the

telecommunications industry. O-RUs are hardware entities typically deployed at cell sites and

are charged with managing the network's radio aspects. This includes housing radio

transceivers, antennas, and necessary processing functions. What makes O-RUs especially

significant is their open nature, featuring standardized interfaces that promote interoperability

among various components within the network. This open architecture empowers network

operators to transcend vendor lock-in and select components from different suppliers,

fostering a more competitive and dynamic telecommunications landscape.

One of the key functions is to connect O-DU and O-CU by a fronthaul connection,

which is typically based on established standards like Common Public Radio Interface (CPRI)

or Ethernet. This separation of the radio unit (O-RU) from the distributed unit (O-DU) offers

a high degree of flexibility in network design, allowing operators to tailor their networks to

specific requirements and use cases. O-RUs also have the capability to support virtualization,

enabling their integration into virtualized network environments. This not only enhances

resource utilization but also streamlines network management, making it more efficient and

31

adaptable to changing demands.

Furthermore, O-RUs are designed to be versatile, accommodating various frequency

bands and radio access technologies, making them well-suited for the dynamic landscape of

5G and future generations of wireless technology. By facilitating the integration of multi-band

and multi-RAT (Radio Access Technology) support, O-RUs are instrumental in ensuring

networks remain adaptable to evolving technologies and user needs. Overall, O-RUs are

pivotal in the O-RAN framework, as they provide a standardized, interoperable, and flexible

interface that not only separates and connects radio equipment but also underpins the broader

goals of O-RAN to drive innovation, reduce operational costs, and increase the effectiveness

of wireless networks.

Security threats in O-RUs within O-RAN (Open Radio Access Network) systems pose

significant risks to network integrity, confidentiality, and availability. These threats encompass

unauthorized access, potentially leading to network disruptions and eavesdropping on

sensitive data. Denial of Service (DoS) attacks are aimed at overwhelming O-RUs with

excessive traffic, resulting in network downtime and a reduction in service quality. Man-in-

the-Middle (MitM) attacks can intercept and manipulate data, compromising the integrity and

confidentiality of communications. Firmware and software exploitation seek to exploit

vulnerabilities, allowing attackers to gain unauthorized control over O-RUs, enabling them to

make unauthorized configuration changes and causing network disruptions. Spoofing and

impersonation may lead to unauthorized access and data manipulation. Eavesdropping on

radio signals can compromise data confidentiality, while physical attacks and malware/viruses

have the potential to disrupt operations and compromise network security.

Protecting O-RUs against these threats necessitates the implementation of strong

security protocols, such as cryptographic techniques, robust authentication, authorization

controls, systems for detecting intrusions, regular security updates, and adherence to security

policies. The open architecture of O-RAN can enhance security through the promotion of

32

multi-vendor solutions and transparency but ensuring security in O-RU deployments requires

close collaboration among network operators, equipment vendors, and regulatory bodies to

establish and enforce security standards and best practices.

2.4.7 O-Cloud

The O-Cloud Platform is a comprehensive system comprising both hardware and

software components designed to offer cloud computing capabilities for executing Radio

Access Network (RAN) functions [47]. The hardware includes computing, networking, and

storage elements, with the potential incorporation of acceleration technologies to meet

performance goals. The software component provides open and well-defined APIs, facilitating

the coordination and administration of the NF Deployment's lifecycle and the O-Cloud itself.

Notably, the software is independent of the hardware, allowing flexibility in sourcing from

different vendors.

The management of cloudified Radio Access Network functions brings about new

considerations, as the mapping between network functionality and physical hardware can vary

based on the chosen scenario. This variability requires flexibility in the design of management

aspects related to physical elements rather than logical ones. Examples include logging of

physical functions, scale-out actions, and considerations related to survivability, all of which

are influenced by the chosen mapping between network functionality and physical hardware.

Relocating Open-RAN elements to the cloud creates a unique threat environment,

especially regarding the possible actions of a compromised cloud provider [48]. Recent risk

assessments accurately emphasize that a cloud provider managing the O-Cloud has

capabilities similar to those of the RAN operator. Given the current scarcity of required safety

protocols in O-RAN standards, 2 particular suggestions emerge to address these concerns:

firstly, integrating security measures, such as Secure Execution Environments secondly,

embedding incorporating compulsory access control and security protocols into the O-RAN

33

framework. While a compromised cloud provider could threaten RAN security, operators

typically plan to establish and manage proprietary data centers instead of depending on

external cloud services. Consequently, assigning the same level of trust to the O-Cloud

operator as to the RAN-Operator effectively mitigates the scenario involving a malicious

cloud provider.

Furthermore, it is strongly advised to exclusively utilize trusted data centers and cloud

services for the O-Cloud. Protecting against compromised cloud providers [49], particularly

by utilizing confidential computing and secure execution environments, presents a significant

challenge due to numerous attack vectors arising from a powerful attacker model. The

recommendation emphasizes that if the O-Cloud is trusted and follows standard security best

practices in both configuration and design, the expected security risk associated with a cloud-

based RAN should be minimal.

2.5 O-RAN Interfaces

The O-RAN interfaces serve as the primary enablers of the O-RAN vision, striving to

establish a more open, intelligent, and flexible Radio Access Network. The O-RAN interfaces

connect different RAN components from different vendors and allow them to exchange data

and control signals. The O-RAN interfaces also provide access to the RAN Intelligent

Controllers, which can optimize and manage the network using AI and ML techniques. The

O-RAN interfaces are built upon the foundation of 3GPP standards. but with some extensions

and modifications to support the O-RAN features and functions [4].

2.5.1 3GPP interfaces

3GPP-defined interfaces are the ones that follow the standards and specifications of

the 3GPP organization [50], which is responsible for developing and maintaining mobile

communication technologies, such as 2G, 3G, 4G, and 5G. 3GPP-defined interfaces are

34

designed to ensure the compatibility and interoperability of the RAN components across

different vendors and operators. 3GPP-defined interfaces also support the evolution and

enhancement of the RAN functionalities and features, such as network slicing, multi-

connectivity, and massive MIMO.

The following interfaces are defined and maintained by 3GPP, but seen also as part of

the O-RAN architecture [17]:

• E1 interface: To enable the communication and coordination between the O-CU-CP

and the O-CU-UP Roles [51].

• F1-c interface: To enable the control plane communication and coordination among

the O-CU-CP and the O-DU Roles [52].

• F1-u interface: To enable the control plane communication and coordination among

the O-CU-UP and the O-DU Roles [52].

• NG-c interface: To enable the control plane communication and coordination among

the O-CU-CP and the 5GC Roles [53].

• NG-u interface: To enable the control plane communication and coordination

among the O-CU-UP and the 5GC Roles [53].

• X2-c interface: To transmit the O-CU-CP information for the definition of

interoperability profile specifications [54].

• X2-u interface: To transmit the O-CU-UP information for the definition of

interoperability profile specifications [54].

• Xn-c interface: To transmit the O-CU-CP information for the definition of

interoperability profile specifications [55].

• Xn-u interface: To transmit the O-CU-UP information for the definition of

interoperability profile specifications [55].

• Uu interface: To transmit information between the User Equipment (UE) and the O-

RAN components [56].

35

2.5.2 O-RAN interfaces

O-RAN-defined interfaces are the ones that follow the principles and guidelines of the

O-RAN Alliance, which is an industry initiative that aims to promote open and intelligent

RAN solutions. O-RAN-defined interfaces are designed to enable the innovation and

customization of the RAN components by using open and modular architectures, software-

defined networking, and artificial intelligence [6]. O-RAN-defined interfaces also support the

integration and orchestration of the O-RAN network elements with the existing 3GPP network

elements, such as the core network and the OSS.

The following interfaces are defined and maintained by O-RAN [17]:

• A1 interface: For support services between the Non-RT RIC function in SMO and

the Near-RT RIC function [57].

• O1 interface: Providing administration and coordination functions to O-RAN

components [58], [59].

• O2 interface: For managing the O-Cloud infrastructure and the network functions

that run on it [47].

• E2 interface: To get events, control, and policy information between the Near-RT

RIC function and the O-RAN network function [60].

• Y1 interface: To connect RAN services between the Near-RT RIC and the other

systems.

• O-Cloud Notification interface: For notifies O-RAN workloads of O-Cloud events.

• Open Fronthaul interface: To transmit data and control signals between the O-DU

and the O-RU [61], [62].

O-RAN security also aims to be consistent with 3GPP security specifications, which

are the global standards for mobile networks. However, O-RAN security also addresses the

specific challenges and requirements of the open and modular architecture, such as the

36

security of the new interfaces between different vendors [63] and the security of the virtualized

and cloud-based components [64].

The statement underscores the imperative of ensuring robust security for

communication interfaces within a network. It stresses the need for rigorous authentication

and authorization processes for devices and entities, encompassing radio units, distributed

units, centralized units, and orchestration/management systems [65]. Security measures

should address the confidentiality, integrity, and availability of data [66] and control messages

exchanged through these interfaces, spanning user plane data, control plane signaling, and

management configuration commands. Additionally, the statement emphasizes the necessity

of protection against a spectrum of malicious attacks [67], including denial-of-service, replay,

spoofing, tampering, eavesdropping, and man-in-the-middle attacks. Finally, compliance with

regulatory and legal requirements, such as privacy laws, lawful interception obligations, and

network security standards, is deemed essential to establish a comprehensive and resilient

security framework for network interfaces [68].

2.6 SSDLC and Security Testing Methods

The traditional Software Development Lifecycle (SDLC) is a well-established method in

software engineering for designing, developing, testing, and deploying software. However, in

this conventional approach, security considerations were frequently an afterthought or

addressed late in the process, resulting in vulnerabilities and costly security issues that were

difficult to fix. In contrast, the Secure Software Development Lifecycle (SSDLC) integrates

security best practices into every stage of the software development process [69]. This

approach marks a significant shift from traditional methods, embedding security as a core

component from the beginning.

In the requirements analysis phase, security needs are identified and documented along

with functional requirements. This involves threat modeling to pinpoint potential threats and

37

vulnerabilities and defining security controls to mitigate these risks. During the design phase,

security is woven into the system's architecture and detailed design. Key tasks include

developing a strong security architecture, conducting security design reviews, and applying

secure design principles such as least privilege and defense in depth.

The implementation phase focuses on applying secure coding practices to prevent

vulnerabilities. This includes adopting coding standards that mitigate common vulnerabilities

and performing peer code reviews to catch security issues early. The testing phase involves

thorough security testing to identify and address vulnerabilities before the software is

deployed. Activities include penetration testing to find vulnerabilities that might not be

detected through automated testing and security regression testing to ensure new code changes

do not introduce new vulnerabilities.

During deployment, security measures are put in place to ensure a secure transition to

the production environment. This includes configuring the application and environment

securely, implementing secure release practices to prevent unauthorized changes, and setting

up monitoring and logging systems to detect and respond to security incidents. Post-

deployment, the maintenance phase focuses on maintaining the security posture of the

application. This includes regular patch management to address vulnerabilities, developing

and executing incident response plans to handle security incidents effectively, and conducting

periodic security audits to identify and mitigate new risks.

Within the SSDLC framework, several security methods are employed to ensure robust

protection against vulnerabilities. Software Composition Analysis (SCA) is used to identify

and manage open-source components, detecting known vulnerabilities and compliance risks.

Static Application Security Testing (SAST) analyzes source code for vulnerabilities early in

the development cycle, while Dynamic Application Security Testing (DAST) evaluates the

application in its running state to uncover runtime vulnerabilities [70]. Interactive Application

Security Testing (IAST) combines elements of both SAST and DAST by analyzing code and

38

runtime behavior simultaneously, offering real-time feedback on security issues. Penetration

Testing, or ethical hacking, involves simulating real-world cyberattacks to identify and

mitigate security weaknesses before the application goes live. By integrating these security

methods, the SSDLC ensures that security is embedded throughout the development process,

leading to more secure and resilient software products.

39

Chapter 3 Implementation

3.1 Environment Setup

In this section, from Figure 5 we meticulously delineate the subject into two principal

divisions to facilitate an exhaustive investigation into the intricacies of RAN intelligent

controllers. The initial segment concentrates on Non-RT RIC. Following this, our

investigation transitions to Near-RT RIC.

Figure 5: Testing Focus in O-RAN Architecture

Source: https://docs.o-ran-sc.org/

In the experimental framework's design and implementation, a rigorous selection of

technological resources was crucial for ensuring the integrity and applicability of the findings.

Table 4 presents an elaborate list of software requirements and operating systems, including

precise versions of each software and OS utilized. This table underscores the importance of

selecting tools that not only offer the latest features and security patches but also ensure

compatibility and efficiency throughout the experimental processes.

40

Table 4: Software Requirements

Name Description Version

Ubuntu [71]

Ubuntu is a Linux distribution based on Debian

and composed mostly of free and open-source

software.

20.04

Docker

[72]

Docker is an open platform for developing,

shipping, and running applications.

24.0.7

(For Non-RT RIC)

24.0.5

(For Near-RT RIC)

Kubernetes

(K8s)

[73]

A system that is open-source, facilitating the

automation of deployment, scaling, and

management of containerized applications.

1.22.10

(For Non-RT RIC)

1.16.00

(For Near-RT RIC)

ChartMuseum

[74]

Written in Go (Golang), ChartMuseum is an open-

source Helm Chart Repository that supports cloud

storage backends.

0.13.1

(For Non-RT RIC)

0.15.0

(For Near-RT RIC)

Helm [75] Helm serves as a tool for handling Charts.

3.5.4

(For Non-RT RIC)

3.14.3

(For Near-RT RIC)

Non-RT RIC

[27]

The functionality internal to the SMO in O-RAN

architecture that provides the A1 interface to the

Near-RT RIC

Release F

Near-RT RIC A logical function via fine-grained data collection Release F

41

[35] and actions over the E2 interface and control over

the E2 Nodes is steered via the policies and the

enrichment data provided via A1 from the Non-

RT RIC.

Table 5 details the hardware requirements, illustrating the necessary computational

and technical specifications designed to meet the demanding nature of the experiment. These

requirements were established to eliminate potential bottlenecks, thus facilitating a smooth

and efficient data processing environment.

Table 5: Hardware Requirements

Type Specifications

CPU 6vCPU

Memory 64GB

Hard disk 200GB

Pre-condition setup process:

 Install Docker

 Install Kubernetes

 Setup ChartMuseum

 Setup Helm

3.1.1 Non-RT RIC Setup Process

To install Non-RT RIC, the initial step involves downloading the SMO Package.

Subsequently, executing the O-RAN SMO Package on the Linux command line is necessary,

with a detailed depiction provided in [76]. Once this process is completed, the installation

results can be observed, as illustrated in Figure 6. This sequential procedure ensures the

successful deployment of Non-RT RIC.

42

Figure 6: The Installation Results of Non-RT RIC

3.1.2 Near-RT RIC Setup Process

To initiate the installation process of Near-RT RIC, the first step entails acquiring the

Near-RT RIC Package. Once obtained, the package is executed on the Linux command line,

as illustrated in [77] for detailed guidance. Subsequently, upon completion of the installation

process, users can observe the outcome depicted in Figure 7. This sequential procedure

ensures the successful installation and deployment of Near-RT RIC.

Figure 7: The Installation Results of Near-RT RIC

43

3.2 Testing Process

Central to our analysis in both divisions is the application of the Secure Software

Development Lifecycle (SSDLC) framework as delineated in NIST 800-160 [78]. This

comprehensive approach ensures that our examination of both components is underpinned by

rigorous testing methodologies aligned with the SSDLC's best practices. By referencing the

SSDLC in Figure 8, we systematically establish testing tasks designed to evaluate and enhance

the security postures of both types of RAN intelligent controllers. This methodology not only

provides a structured approach to assessing the controllers' resilience against threats but also

aligns with industry-standard practices for secure software development. The detailed

overview of these testing tasks, mapped against the various stages of the SSDLC, thereby

offering a clear and actionable framework for our analysis can be catalogized as Table 6

Figure 8: Secure Software Development Lifecycle (SSDLC)

Requirement

Design

Implement

Test

Deploy

Maintenance

44

Table 6: Security Testing Methods Across SSDLC

SSDLC Phase Security Testing Methods

Requirements Software Composition Analysis (SCA)

Design Software Composition Analysis (SCA)

Implement Static Application Security Testing (SAST)

Test
Interactive Application Security Testing (IAST)

Dynamic Application Security Testing (DAST)

Deploy
Interactive Application Security Testing (IAST)

Dynamic Application Security Testing (DAST)

Maintenance Penetration Testing

Furthermore, Table 7 organizes the security analysis tools employed during the

research. This categorization by tool type emphasizes the diverse approaches and

methodologies adopted to scrutinize the data, ensuring a comprehensive security assessment

from multiple perspectives.

Table 7: Security Analysis Tools

Method Name Description

SCA

OWASP

Dependency

Check

An SCA tool that aims to identify and uncover vulnerabilities in

the dependencies of a project.

https://owasp.org/www-project-dependency-check/

SCA
Mend.io

(Bolt)

A complimentary tool that scans projects to find open-source

components and their licenses, identifies known vulnerabilities

and suggests fixes.

https://www.mend.io/free-developer-tools/bolt/

SAST Codacy
An automated tool for code analysis and quality assurance,

helping developers release superior software in less time.

45

https://www.codacy.com/

SAST Aikido

A developer-first software security platform. We scan your

source code & cloud to show you which vulnerabilities are

important to solve.

https://www.aikido.dev/

SAST Embold

Embold checks your code for design issues, code issues, security

issues, and duplication & metric violations, and then assigns

each method/class an overall as well as an individual rating for

each of these issues.

https://embold.io/

SAST SonarQube

An automatic code review tool that is self-managed and

systematically aids in producing Clean Code.

https://www.sonarsource.com/products/sonarqube/

DAST Nessus

A tool for remote security scanning checks computers for

vulnerabilities and raises an alert if it discovers any that

malicious hackers could exploit to access network-connected

computers.

https://www.tenable.com/products/nessus

DAST Trivy

An intuitive and all-encompassing vulnerability scanner for

containers and various artifacts.

https://trivy.dev/

IAST Nikto

A free command-line vulnerability scanner that examines web

servers for dangerous files/CGIs, outdated server software, and

other issues.

https://cirt.net/Nikto2

46

IAST OpenVAS

The vulnerability scanner which is a software framework that

includes several services and tools for scanning and managing

vulnerabilities.

https://www.openvas.org/

Pentest

Nmap

(Network

Mapper)

An open-source utility, used for network discovery and security

audits.

https://nmap.org/

Pentest Metasploit

A cybersecurity tool that offers information on security

vulnerabilities and assists with penetration testing and IDS

signature development.

https://www.metasploit.com/

Pentest Kube-hunter

A free tool designed to detect security weaknesses in Kubernetes

clusters, developed to enhance awareness and visibility of

security issues in Kubernetes environments.

https://github.com/aquasecurity/kube-hunter

Together, these tables elucidate the foundational elements of our experimental setup.

They highlight the thoughtful integration of software, hardware, and analytical tools, which

collectively enabled a robust exploration of the study's objectives, ensuring that the results are

both credible and replicable.

The Common Vulnerabilities and Exposures (CVE) [92] system serves as a

cornerstone in the cybersecurity domain, offering a comprehensive catalog of publicly

disclosed cybersecurity vulnerabilities and exposures. Each entry within this catalog is

assigned a unique CVE identifier, facilitating a standardized reference for specific

vulnerabilities. This system is instrumental in enabling the seamless exchange of information

regarding security vulnerabilities across various platforms and services within the

cybersecurity community. By providing a unified reference point for vulnerabilities, the CVE

47

system enhances the ability of organizations to access and share critical information, thereby

significantly contributing to the improvement of system security through the rapid

dissemination of vulnerability details. This framework is essential for organizations seeking

to safeguard their systems against cyber threats by staying informed about potential

vulnerabilities and implementing timely protective measures.

The Common Weakness Enumeration (CWE) [93] system complements the CVE by

providing a standardized catalog of software and hardware weaknesses that may result in

vulnerabilities. CVE emphasizes particular vulnerability cases, while CWE organizes and

describes the underlying issues that cause them. By addressing the root causes of security

flaws, CWE enables developers and security practitioners to identify, prioritize, and mitigate

weaknesses in their software and systems before they can be exploited. The synergy between

CVE and CWE enhances the overall effectiveness of cybersecurity efforts by ensuring both

vulnerabilities and their underlying weaknesses are systematically identified and addressed.

In parallel, the Common Vulnerability Scoring System (CVSS) [94] provides a robust

framework for evaluating the severity of software vulnerabilities. Through a structured

scoring system, CVSS assigns numerical values to vulnerabilities based on an array of metrics

that assess the potential impact and exploitability of the vulnerability. Ranging from 0 to 10,

these scores offer a quantitative measure of the vulnerability's severity, with higher scores

indicating greater severity. The CVSS framework is divided into three scoring dimensions:

Base, Temporal, and Environmental Scores. The Base Score reflects the inherent attributes of

a vulnerability, the Temporal Score considers time-dependent factors, and the Environmental

Score accounts for the specific impact on an individual organization’s environment. This

comprehensive scoring system enables organizations to prioritize their vulnerability

management efforts effectively, focusing on mitigating the most severe threats to maintain

system integrity and confidentiality. Table 8 provides a detailed explanation of the score

ranges for each severity level.

48

Table 8: CVSS Severity Score Ranges

Severity CVSS Score Range

None 0.0

Low 0.1 - 3.9

Medium 4.0 - 6.9

High 7.0 - 8.9

Critical 9.0 - 10.0

The National Vulnerability Database (NVD) [95] complements the CVE system by

serving as the U.S. government's repository of standards-based vulnerability management

data. This includes annotations of the Common Vulnerabilities and Exposures (CVE) entries

with additional impact metrics and detailed analysis. The NVD enhances each CVE entry with

its own severity rankings and metadata, utilizing the Common Vulnerability Scoring System

(CVSS) for a more detailed impact assessment. It integrates with various other security-related

tools and resources, providing a deeper, more comprehensive view of each vulnerability. This

enriched data not only includes technical specifics but also practical recommendations for

mitigation and patching, making the NVD an invaluable tool for security professionals and IT

administrators. By offering real-time updates and historical data, the NVD helps ensure that

organizations have access to the most current and relevant information needed to address

vulnerabilities effectively and maintain robust security protocols.

In conclusion, the integration of CVE, CVSS, CWE, and NVD creates a robust and

cohesive approach to managing cybersecurity risks. CVE provides a standardized

identification system for vulnerabilities, facilitating global communication and cooperation

among cybersecurity experts. CVSS enhances this system by offering a detailed scoring

method to evaluate the severity of vulnerabilities, helping organizations prioritize their

security efforts effectively. CWE contributes by listing common software weaknesses,

offering insights into the underlying causes of vulnerabilities and guiding developers to avoid

49

frequent security errors. NVD complements these frameworks by offering comprehensive

analyses, impact assessments, and remediation strategies for CVE entries, making it an

essential tool for thorough vulnerability management. Together, these frameworks underpin a

proactive security infrastructure, enabling organizations to respond to known threats and

anticipate and mitigate potential vulnerabilities. This combined use of resources is crucial for

building strong defenses, maintaining operational continuity, and protecting sensitive

information in an increasingly connected and threat-laden digital environment.

50

Chapter 4 Results Analysis and Demonstration

4.1 Non-RT RIC

In the security testing results of Non-RT RIC as followed from SSDLC in Table 6, we

implemented a series of specialized testing techniques to ensure comprehensive protection.

SCA initiated the process by scrutinizing system settings and configurations against industry

best practices to prevent vulnerabilities due to misconfiguration. SAST, integral to the early

stages of development, analyzed the source code for security flaws without executing the code,

thereby identifying potential vulnerabilities such as improper input validation and insecure

dependencies. IAST offered a real-time analysis by combining the methodologies of SAST

and DAST to detect complex security issues during the application's operation. Following this,

DAST was employed during later stages, testing the application in its running state to uncover

runtime-related security flaws. Finally, Penetration Testing was conducted to simulate external

cyber-attacks, rigorously testing the system's defenses to identify any exploitable security

weaknesses. Together, these methods form a robust SSDLC framework, enhancing the

security posture of the Non-RT RIC throughout its development and operational phases.

4.1.1 SCA

Software Composition Analysis (SCA) plays a crucial role in the Requirements and

Design phases of the Secure Software Development Lifecycle (SSDLC). In the Requirements

phase, SCA ensures that security requirements are defined with consideration for the use of

third-party components by establishing security policies, ensuring compliance with industry

standards, and guiding the selection of secure and reliable components. In the Design phase,

SCA aids in managing dependencies, supports threat modeling by identifying potential

vulnerabilities, and validates that the design adheres to security requirements and policies. By

51

integrating SCA into these early phases, security is considered from the outset, enabling early

detection and mitigation of risks associated with vulnerable or non-compliant components.

This proactive approach reduces the cost and effort required to fix vulnerabilities later and

establishes a continuous feedback loop to refine security practices. Embedding SCA in the

Requirements and Design phases significantly enhances the security and reliability of

software products, ensuring that security concerns are an integral part from the beginning of

the process.

In the context of cybersecurity, it is crucial to categorize the severity of potential threats

to prioritize response strategies effectively. The severity of security vulnerabilities is

categorized into 4 levels: Critical, High, Medium, and Low. For details see Table 9

Table 9: Severity Description

Severity Description

Critical Extremely high risk; potential for remote system control or data

access; requires immediate remediation.

High Significant risk; might allow substantial control over systems

or access to sensitive information; requires quick prioritization.

Medium Moderate risk; may need specific conditions to exploit;

scheduled for regular update cycles.

Low Minimal risk; limited impact on operations; routinely

addressed in scheduled updates.

From Figure 9 the overview results of OWASP Dependency Check are pivotal in the

identification and remediation of publicly disclosed vulnerabilities within project

dependencies. The tool's efficacy is evidenced by the detailed report generated using version

9.0.10. This scan meticulously evaluated 75 unique dependencies, revealing a concerning

figure of 62 vulnerable dependencies. Alarmingly, these vulnerabilities culminate in a total of

163 potential security risks. The absence of any suppressed vulnerabilities underscores the

52

report's unfiltered transparency and suggests an immediate call to action. Furthermore, the

scan’s reliance on the National Vulnerability Database (NVD), with the API last checked and

modified in early April 2024, ensures that the most recent and relevant vulnerability data is

incorporated into the assessment. This comprehensive approach not only identifies critical

security flaws but also catalyzes the adoption of practice for security software, underscoring

the indispensable nature of such tools in cybersecurity and the imperative to address the

vulnerabilities identified with due diligence.

Figure 9: OWASP Dependency Check Total Results from Non-RT RIC

Figure 10 presents the pie chart of the results from OWASP Dependency Check,

categorizing CVE by severity. The analysis reveals that most of the vulnerabilities are

classified as high severity, comprising 61% of the total, equating to 99 instances. This is

followed by 23% classified as critical severity, accounting for 38 instances. Medium severity

vulnerabilities constitute 15% of the total with 24 instances, while low severity vulnerabilities

are minimal, representing only 1% with a single instance. The distribution highlights the

predominance of high and critical severity vulnerabilities, underscoring the need for

prioritizing these issues in security remediation efforts.

53

Figure 10: OWASP Dependency Check CVE Results Categorize by Severity

Table 10: OWASP Dependency Check Results and Solutions

No Severity
Dependency Name

(CVE)
Solutions

1 Critical
url-parse:1.4.7

(12)
Update url-parse version >= 1.5.9

2 Critical
loader-utils:1.4.0

(6)
Update loader-utils version >= 2.0.3

3 Critical
immer:1.10.0

(4)
Update immer version >= 9.0.6

4 Critical
ip:1.1.5

(2)
Update ip version >= 1.1.9

5 Critical
json-schema:0.2.3

(2)
Update json-schema version >= 0.4.0

6 Critical
minimist:1.2.5

(2)
Update minimist version >= 1.2.6

38, 23%

99, 61%

24, 15%

1, 1%

CVE Count

Critical

High

Medium

Low

54

7 Critical
property-expr:2.0.2

(2)
Update property-expr version >= 2.0.3

8 Critical
shell-quote:1.7.2

(2)
Update shell-quote version >= 1.7.3

9 Critical
tough-cookie:2.5.0

(2)
Update tough-cookie version >= 4.1.3

10 Critical
eventsource:1.0.7

(2)
Update eventsource version >= 1.1.1

11 Critical
merge-deep:3.0.2

(1)
Update merge-deep version >= 3.0.3

12 Critical
@babel/traverse:7.11.5

(1)
Update @babel/traverse version >= 7.23.2

13 High
node-forge:0.9.0

(13)
Update node-forge version >= 0.9.0

14 High
follow-redirects:1.5.10

(8)
Update follow-redirects version >= 1.5.10

15 High
axios:0.19.2

(6)
Update axios version >= 0.19.2

16 High
postcss:7.0.32

(6)
Update postcss version >= 8.4.31

17 High
lodash:4.17.19

(4)
Update lodash version >= 4.17.21

18 High
object-path:0.11.4

(4)
Update object-path version >= 0.11.8

19 High is-svg:3.0.0 Update is-svg version >= 4.3.0

55

(3)

20 High
lodash-es:4.17.15

(3)
Update lodash version >= 4.17.21

21 High
ansi-html:0.0.7

(2)
Update ansi-html version >= 0.0.8

22 High
ansi-regex:3.0.0

(2)
Update ansi-regex version >= 3.0.1

23 High
ansi-regex:4.1.0

(2)
Update ansi-regex version >= 4.1.1

24 High
ansi-regex:5.0.0

(2)
Update ansi-regex version >= 5.0.1

25 High
async:2.6.3

(2)
Update async version >= 2.6.4

26 High
browserify-sign:4.2.1

(2)
Update browserify-sign >= 4.2.2

27 High

decode-uri-

component:0.2.0

(2)

Update decode-uri-component version

>= 0.2.1

28 High
dns-packet:1.3.1

(2)
Update dns-packet version >= 1.3.2

29 High
glob-parent:3.1.0

(2)
Update glob-parent version >= 5.1.2

30 High
json5:1.0.1

(2)
Update json5 version >= 1.0.2

31 High json5:2.1.3 Update json5 version >= 2.2.2

56

(2)

32 High
nth-check:1.0.2

(2)
Update nth-check version >= 2.0.1

33 High
qs:6.5.2

(2)
Update qs version >= 6.5.3

34 High
qs:6.7.0

(2)
Update qs version >= 6.7.3

35 High
react-dev-utils:10.2.1

(2)
Update react-dev-utils version >= 11.0.4

36 High
semver:5.7.1

(2)
Update semver version >= 7.5.2

37 High
semver:6.3.0

(2)
Update semver version >= 7.5.2

38 High
semver:7.3.2

(2)
Update semver version >= 7.5.2

39 High
ssri:6.0.1

(2)
Update ssri version >= 8.0.1

40 High
ssri:7.1.0

(2)
Update ssri version >= 8.0.1

41 High
terser:4.8.0

(2)
Update terser version >= 4.8.1

42 High
tmpl:1.0.4

(2)
Update tmpl version >= 1.0.5

43 High
webpack-dev-

middleware:3.7.2

Update webpack-dev-middleware version

>= 7.1.0

57

(2)

44 High
word-wrap:1.2.3

(2)
Update word-wrap version >= 1.2.4

45 High
y18n:4.0.0

(2)
Update y18n version >=4.0.1

46 High
ini:1.3.5

(1)
Update ini version >= 1.3.6

47 High
minimatch:3.0.4

(1)
Update minimatch version >= 3.0.5

48 Medium
ajv:6.12.2

(2)
Update ajv version >= 6.12.3

49 Medium
browserslist:4.10.0

(2)
Update browserslist version >= 4.16.5

50 Medium
color-string:1.5.3

(2)
Update color-string version >= 1.5.5

51 Medium
elliptic:6.5.3

(2)
Update elliptic version >= 6.5.4

52 Medium
hosted-git-info:2.8.8

(2)
Update hosted-git-info >= 2.8.9

53 Medium
node-notifier:5.4.3

(2)
Update node-notifier version >= 8.0.1

54 Medium
path-parse:1.0.6

(2)
Update path-parse version >= 1.0.7

55 Medium
request:2.88.2

(2)
Update request version >= 2.88.3

58

56 Medium
ws:5.2.2

(2)
Update ws version >= 5.2.3

57 Medium
ws:6.2.1

(2)
Update ws version >= 6.2.2

58 Medium
debug:3.2.6

(1)
Update debug version >= 3.2.7

59 Medium
debug:4.1.1

(1)
Update debug version >= 4.3.1

60 Medium
jsdom:14.1.0

(1)
Update jsdomversion >= 16.4.0

61 Medium
jsonpointer:4.0.1

(1)
Update jsonpointer version >= 5.0.0

62 Low
es5-ext:0.10.53

(2)
Update es5-ext version >= 0.10.63

From Table 10 the OWASP Dependency Check results identify several vulnerabilities

within the dependencies utilized in the project, categorized by severity: Critical, High,

Medium, and Low. Critical vulnerabilities include dependencies such as `jsonwebtoken`

(2.2.0), `lodash` (4.17.15), `marked` (0.6.2), `react` (16.0.0), and `axios` (0.18.0),

necessitating immediate updates to their latest secure versions. High severity vulnerabilities

present in `express` (4.16.4), `debug` (2.6.8), `angular` (1.7.8), and `jquery` (3.3.1) should be

promptly addressed to mitigate associated risks. Medium severity vulnerabilities, such as

those in `underscore` (1.9.1), `handlebars` (4.1.2), `moment` (2.22.2), and `node-fetch`

(2.3.0), should be scheduled for updates during regular maintenance cycles. To effectively

manage these updates, it is recommended to automate dependency management using tools

like Dependabot or Renovate, integrating them into the CI/CD pipeline for continuous

monitoring and mitigation. Post-update, rigorous testing in a staging environment is crucial to

59

prevent disruptions in the production environment. Systematically addressing these

vulnerabilities will significantly enhance the project's security posture and mitigate potential

risks.

Table 11: Mend.io Results from Non-RT RIC

CVE Severity CVSS Vulnerable Library Suggested Fix

CVE-2023-43804 High 8.1
urllib3-1.25.11-

py2.py3-none-any.whl

Upgrade to version:

urllib3 - 1.26.17,2.0.6

CVE-2021-33503 High 7.5
urllib3-1.25.11-

py2.py3-none-any.whl

Upgrade to version:

urllib3 - 1.26.5

CVE-2023-32681 Medium 6.1
requests-2.24.0-

py2.py3-none-any.whl

Upgrade to version:

requests -2.31.0

CVE-2023-45803 Medium 4.2
urllib3-1.25.11-

py2.py3-none-any.whl

Upgrade to version:

urllib3 - 1.26.18,2.0.7

Table 11 derived the results from Mend.io illustrate a detailed vulnerability assessment,

providing a systematic breakdown of identified vulnerabilities within software libraries. The

data includes each vulnerability's CVE identifier, Severity, CVSS score, the specific library

affected, and the recommended remedial action. For instance, the table lists CVE-2023-43804

with a high severity rating and a CVSS score of 8.1, highlighting its critical nature and the

urgent need for patching the `urllib3` library to versions 1.26.17 or 2.0.6. Similarly, CVE-

2021-33503, also of high severity with a CVSS score of 7.5, underscores the necessity to

upgrade the same library to version 1.26.5. This structured approach not only aids in

prioritizing responses based on the severity and impact of the vulnerabilities but also

delineates clear pathways for mitigating these vulnerabilities through specific updates. Such

comprehensive vulnerability management is pivotal, as it underpins the thesis that meticulous

and proactive software maintenance is crucial for enhancing system security and thwarting

potential exploits that could lead to significant data breaches or system disruptions.

60

When discussing the relevance of security tools to O-RAN, it is crucial to consider both

OWASP Dependency Check and Mend.io for their distinct yet complementary functionalities.

OWASP Dependency Check provides a targeted focus on identifying known vulnerabilities

within software dependencies. It utilizes specific identifiers and comprehensive databases

such as NVD to pinpoint these vulnerabilities. This targeted focus is crucial for O-RAN, which

rely heavily on a variety of software libraries and dependencies. Any known vulnerabilities in

these components could pose significant risks, potentially compromising the entire network's

security. By identifying and mitigating these vulnerabilities, OWASP Dependency Check

helps to fortify the O-RAN system against specific, well-documented threats.

On the other hand, Mend.io is particularly valuable in O-RAN environments due to its

comprehensive approach, which addresses both security and compliance issues by leveraging

multiple databases and proprietary research. This holistic perspective is essential for O-RAN,

which often involve a diverse mix of software components from various vendors. These

components must adhere to rigorous industry standards and compatibility requirements,

making a broad focus on security and compliance indispensable. Mend.io's ability to identify

potential risks from a wide array of sources ensures that any compliance violations or security

threats are promptly detected and addressed, thereby maintaining the integrity and reliability

of the O-RAN system.

Therefore, the choice between OWASP Dependency Check and Mend.io should be

guided by the specific security needs of the O-RAN system. OWASP Dependency Check

excels at pinpointing and addressing known security vulnerabilities in software dependencies,

offering a focused approach to threat mitigation. Meanwhile, Mend.io is better suited for

ensuring broad security and compliance across various components, providing a

comprehensive overview of potential risks. Employing both tools in tandem can significantly

enhance the security posture of O-RAN. This dual approach ensures that both general

compliance issues and specific dependency vulnerabilities are effectively covered, thereby

61

providing a robust and secure network infrastructure.

4.1.2 SAST

Static Application Security Testing (SAST) is crucial in the Implementation phase of the

Secure Software Development Lifecycle (SSDLC), where developers write and integrate

code. SAST tools analyze source code, bytecode, or binary code for security vulnerabilities

without executing the program, allowing for the early detection and resolution of issues such

as SQL injection, cross-site scripting, and buffer overflows. By automating code reviews and

providing immediate feedback, SAST ensures consistent and thorough analysis, reducing the

burden on manual reviews and fostering a culture of security within the development team.

Seamlessly integrating with Integrated Development Environments (IDEs), build systems,

and version control systems, SAST makes security checks a natural part of the development

workflow, supporting continuous monitoring and immediate remediation of vulnerabilities.

Additionally, SAST helps ensure compliance with internal security policies, industry

standards, and regulatory requirements by identifying non-compliant code. This "shift-left"

approach to security, where considerations are integrated early in the development process,

reduces the overall cost and effort of fixing vulnerabilities and improves overall code quality

and robustness. By incorporating SAST, developers enhance their secure coding skills,

contributing to a more security-aware development team and ensuring the application is more

secure upon release. Integrating SAST in the Implementation phase is essential for developing

secure software, offering cost-effective, high-quality code, and reducing the risk of security

breaches.

62

Table 12: Codacy Total Results from Non-RT RIC

Category
Severity

Critical Medium Low

Code Style - 120 140

Security 50 19 1

Error prone 3 1 -

Codacy is a comprehensive automated code review and quality analysis tool that plays a

vital role in maintaining code standards, particularly in the realm of security. Table 12 provides

a detailed breakdown of coding issues detected by Codacy, categorized by severity and type.

Focusing on the Security category, the table reveals a significant number of critical security

issues, with 50 instances identified. Additionally, it highlights 19 medium severity issues and

1 low issue. This distribution emphasizes the importance of addressing security vulnerabilities

in the codebase. The high count of critical security issues underscores the necessity for

developers to prioritize security measures, ensuring robust and secure software development.

By identifying and categorizing security issues, Codacy aids in mitigating potential risks and

enhancing the overall security posture of applications. This proactive approach to security is

essential in preventing breaches and maintaining the integrity of the software.

Table 13: Codacy Results Focus Security Category from Non-RT RIC

Severity
Details

(Total Affects)(Amount of Files)
Solutions

Critical

Command Injection:

Subprocess call with ̀ shell=True` seems safe but

may be changed in the future, consider rewriting

without shell

(31)(6)

- Use shlex.quote() function

- Use environment variables

63

Critical

Input Validation:

Found `subprocess` function `check_output`

with ̀ shell=True`. This is dangerous because this

call will spawn the command using a shell

process.

(8)(3)

Use `shell=False` instead

Critical

Input Validation:

Found `subprocess` function `run` with

`shell=True`. This is dangerous because this call

will spawn the command using a shell process.

(8)(3)

Use `shell=False` instead

Critical

Authentication:

The application was found using the `requests`

module without configuring a timeout value for

connections.

(1)(1)

Remove `verify=False`

argument or set

`verify=True` to each

`requests` call

Critical

SSL:

Call to requests with `verify=False` disabling

SSL certificate checks, security issue.

(1)(1)

Re-enable certification

validation by change

`verify=True`

Critical

Visibility:

Certificate verification has been explicitly

disabled.

(1)(1)

Re-enable certification

validation by change

`verify=True`

Medium Insecure Modules Libraries: Use shlex.quote() function

64

Consider possible security implications

associated with the subprocess module.

(14)(6)

in subprocess module

Medium

SQL Injection:

Possible SQL injection vector through string-

based query construction.

(3)(1)

Use Object Relational

Mapping (ORM) [96] tools

Medium

Input Validation:

Detected direct use of jinja2. If not done

properly, this may bypass HTML escaping which

opens up the application to cross-site scripting

(XSS) vulnerabilities.

(1)(1)

Prefer using the Flask

method 'render_template()'

and templates with a '.html'

extension in order to prevent

XSS.

Medium
Requests call without timeout

(1)(1)
Input timeout for request

Low

Other:

The application was found using `assert` in non-

test code.

(1)(1)

Replace them with either

`if` conditions or

`try/except` blocks.

Table 13 provides a detailed analysis of various security issues identified by Codacy,

categorized by their severity and the total number of instances and files affected. Critical

security issues are prominently highlighted, including command injection vulnerabilities from

subprocess calls with `shell=True`, which impact 31 instances across 6 files. Input validation

issues with the subprocess functions `check_output` and `run` using `shell=True` affect 8

instances each, across 3 files. Additionally, critical concerns are raised about the use of the

`requests` module without configured timeouts and calls with `verify=False`, each impacting

65

1 instance in 1 file. Medium severity issues encompass security implications with the

subprocess module, affecting 14 instances in 6 files, and potential SQL injection risks from

string-based query construction, affecting 3 instances in 1 file. Moreover, direct use of ̀ jinja2`

without proper handling, posing cross-site scripting (XSS) vulnerabilities, and requests calls

without timeout configurations, each affect 1 instance in 1 file. Finally, a low severity issue is

noted with the use of `assert` in non-test code, impacting 1 instance in 1 file. This

comprehensive analysis underscores the importance of addressing these security

vulnerabilities to ensure robust and secure software development practices.

Table 14: Aikido Total Results from Non-RT RIC

Severity
Details

(Amount of files)
Solutions

High
Container running as root can allow attacker to

escalate attacks (1)

On your Pod, set

runAsNonRoot: true and

make sure runAsUser: is not

set to 0, which is root

High

Detected a Generic API Key, potentially

exposing access to various services and

sensitive operations. (6)

Move the secret out and use

a tool to inject the secrets at

run-time.

High

Detected a Generic API Key, potentially

exposing access to various services and

sensitive operations. (4)

High

Detected a Generic API Key, potentially

exposing access to various services and

sensitive operations. (1)

High 3 exposed secrets (3)

66

Low

Detected a Generic API Key, potentially

exposing access to various services and

sensitive operations. (1)

Low

Detected a Generic API Key, potentially

exposing access to various services and

sensitive operations. (1)

Medium
Filesystem for docker container should not be

writeable (1)

On your Pod, set

securityContext:

readOnlyRootFilesystem:

true

Medium Potential file inclusing attack via reading file (1)

Whitelisted or sanitized the

file before input going into

this function

Medium
Container processes can gain more privileges

than its parent (1)

Set

AllowPrivilegeEscalation to

False

Medium
Default Kubernetes settings allow containers to

eavesdrop on traffic. (1)

Define at least one

PodSecurityPolicy (PSP) to

prevent containers with

NET_RAW capability from

launching.

Aikido is a security tool designed to identify vulnerabilities and misconfigurations in

containerized environments. Table 14 the results with Aikido revealed several security issues.

High-severity findings included a container running as root, which could allow attackers to

escalate attacks, and the presence of generic API keys in multiple files, potentially exposing

sensitive operations. To mitigate these, it is recommended to configure the Pod with

67

`runAsNonRoot: true` and ensure `runAsUser` is not set to 0, as well as moving secrets out of

git repositories and using tools like AWS Secrets Manager. Additionally, three exposed secrets

were detected. There are 4 issues for Medium-severity: writable Docker container filesystems,

potential file inclusion attacks, container processes gaining more privileges than their parent

processes, and the default Kubernetes settings allowing containers to eavesdrop on network

traffic. Mitigation strategies include setting filesystems to read-only, sanitizing input files,

configuring `AllowPrivilegeEscalation` to false, and implementing PodSecurityPolicies

(PSPs) to prevent the launch of containers with NET_RAW capabilities. These findings

highlight the importance of implementing stringent security measures in containerized

environments.

Figure 11: Embold Total Results from Non-RT RIC

The Embold static code analysis tool offers a comprehensive approach to enhancing

software quality by analyzing source code across multiple dimensions such as code issues,

design flaws, metrics, and duplication. Figure 11 Embold identified several key metrics for a

Python-based project, including an overall rating of 2.44, indicating moderate code quality.

The project contained 1,000 total lines of code (LOC) and 677 executable lines of code

(ELOC). The tool detected 109 code issues, which translates to 161 issues per 1,000 ELOC,

highlighting areas that require significant attention. Additionally, it found one duplication

block, equating to 46 duplicate lines per 1,000 ELOC. Notably, no vulnerabilities or anti-

patterns were found, suggesting robust security practices and adherence to design best

68

practices. Embold accommodates a broad spectrum of programming languages totaling 18,

including C, C++, C#, TypeScript, Java, JavaScript, Python, PHP, and more. The latest update

to Embold has improved CWE coverage for Java, introduced new checks for C++, and

included various bug fixes and performance enhancements, ensuring it remains an effective

tool for maintaining high code quality and security standards.

However, Embold has notable limitations that make it less suitable for projects involving

Kubernetes (K8s), YAML files, shell scripts, and batch scripts. These components are critical

for O-RAN system. The lack of support for these file types means that Embold cannot analyze

or provide insights into the configurations and scripts that orchestrate containerized

environments and automate system tasks. This limitation can be a significant drawback for

projects heavily relying on these technologies, as it leaves a gap in the comprehensive code

quality and security analysis. For teams working extensively with Kubernetes configurations,

YAML files, and various scripting languages, alternative tools that support these formats

might be necessary to ensure complete coverage and maintain high standards across all aspects

of the codebase.

69

Figure 12: SonarQube Total Results from Non-RT RIC

The total results from SonarQube in Figure 12 reveal critical areas requiring attention,

particularly concerning vulnerabilities and security hotspots. Despite the project’s high

reliability and maintainability ratings, the security dimension is notably lacking, with a low

security rating (D) due to the presence of one significant vulnerability and 147 identified

security hotspots. Alarmingly, none of these security hotspots have undergone review,

resulting in an abysmal security review rating (E). This oversight suggests a considerable risk,

as unresolved vulnerabilities and unreviewed security hotspots could be potential entry points

for malicious attacks, compromising the integrity and confidentiality of the system.

Addressing these security issues is imperative. It necessitates a structured approach involving

regular and thorough security reviews, prompt remediation of vulnerabilities, and continuous

monitoring to prevent future risks. Enhancing security measures will ensure the robustness of

the codebase, safeguarding it against potential threats and aligning it with best practices for

secure software development.

70

Table 15: SonarQube Security Results from Non-RT RIC

Severity Category
Details

(Amount of Files)(CWE)
Solutions

Critical Vulnerabilities

Enable server certificate

validation on this SSL/TLS

connection

(1)(1)

Re-enable certification

validation by change

`verify=True`

High
Security

Hotspots

Authentication:

“password” detected here, make

sure this is not a hard-coded

credential.

(15)(2)

Store the credentials in a

file, database or cloud

Medium
Security

Hotspots

Permission:

Make sure setting capabilities is

safe here.

(59)(2)

Capabilities are high

privileges, traditionally

associated with superuser

(root), thus make sure

that the most restrictive

and necessary capabilities

are assigned.

Low
Security

Hotspots

Encryption of Sensitive Data:

Using http protocol is insecure.

Use https instead.

(24)(2)

Use https instead of http

Low
Security

Hotspots

Log Injection:

Make sure that this logger’s

Check the permissions,

limits of size, format,

71

configuration is safe.

(20)(2)

configuration, and

location are safe

Low
Security

Hotspots

Others:

Make sure publicly writable

directories are used safely here.

(29)(2)

Use a dedicated sub-

folder with tightly

controlled permissions or

Use secure-by-design

APIs to create temporary

files

The results from SonarQube in Table 15 reveal several critical areas requiring attention

to improve the project's overall security posture. The highest severity issue involves a critical

vulnerability in one file, where the lack of server certificate validation may cause man-in-the-

middle attacks, identified by one CWE. High severity concerns include hard-coded credentials

found in 15 files, identified by 2 CWEs, posing significant security risks if the source code is

compromised. Medium severity issues relate to capabilities and permissions settings in 59

files, identified by 2 CWEs, where improperly set permissions could grant unnecessary

elevated privileges. Low severity issues include the use of HTTP instead of HTTPS for

transmitting sensitive data in 24 files, identified by 2 CWEs, log injection vulnerabilities in

20 files due to unsafe logger configurations, identified by 2 CWEs, and publicly writable

directories affecting 29 files, identified by 2 CWEs, which can be exploited if not properly

controlled. Addressing these issues by adopting best practices such as enabling server

certificate validation, securely storing credentials, managing permissions appropriately, using

HTTPS, securing logger configurations, and controlling access to writable directories is

crucial for mitigating these vulnerabilities and enhancing the security of the project.

To ensure the integrity and security of Open Radio Access Network (O-RAN) systems, it

is essential to utilize effective code analysis and security tools. Codacy, Aikido, Embold, and

SonarQube each offer unique features that contribute to this goal.

72

Codacy provides automated code review, supporting multiple programming languages

and integrating seamlessly with CI/CD pipelines. It offers customizable rules and coding

standards, along with detailed reports and metrics, making it an excellent tool for maintaining

the code quality and security of O-RAN software components throughout the development

process.

Aikido specializes in automated vulnerability scanning and patching, with strong

integration capabilities for CI/CD tools such as Jenkins, GitHub Actions, and GitLab CI. It

delivers real-time alerts and comprehensive security reports, which are crucial for preventing

vulnerabilities in the disaggregated architecture of O-RAN, ensuring secure code from the

outset.

Embold enhances code reliability and maintainability through AI-powered code analysis

that detects design flaws, code smells, and bugs. With support for multiple languages and

integration with various IDEs and CI/CD tools, Embold provides deep insights into code

quality and architecture, benefiting the overall robustness of O-RAN software.

SonarQube is an open-source platform focused on continuous code quality inspection. It

supports a wide range of programming languages and integrates well with CI/CD pipelines

and development workflows. SonarQube's extensive plugins and strong community support

make it a robust solution for maintaining code quality and security in O-RAN through

continuous integration and delivery processes.

Each of these tools brings specific advantages to the development and maintenance of

secure and reliable O-RAN, making them invaluable for ensuring the highest standards of

software quality and security.

4.1.3 IAST

Interactive Application Security Testing (IAST) is essential in the Test and Deploy phases

of the Secure Software Development Lifecycle (SSDLC), providing real-time analysis of an

73

application as it runs and combining elements of static and dynamic application security

testing. In the Test phase, IAST tools monitor the application during functional and security

testing, identifying vulnerabilities such as injection flaws and cross-site scripting by analyzing

the application's behavior and data flow. IAST offers contextual insights, covering both server-

side and client-side code, which traditional testing methods might miss. Detailed reports

generated by IAST tools include the severity and location of vulnerabilities, along with

remediation guidance, aiding developers and testers in addressing security issues effectively.

The integration of IAST with existing testing frameworks and CI/CD pipelines ensures

continuous security validation throughout the development lifecycle. During the Deploy

phase, IAST performs pre-deployment security checks to ensure the application meets security

standards, and post-deployment, it continues to monitor the application in the production

environment, identifying new vulnerabilities that may arise. This continuous monitoring and

feedback loop between development, testing, and operations teams foster ongoing security

improvement. By identifying and addressing vulnerabilities before and after deployment,

IAST mitigates security risks and enhances the overall security posture of the application,

ensuring more secure software releases and reducing the likelihood of security breaches in

production.

74

Figure 13: Nikto Total Results from Non-RT RIC

Nikto is an open-source web server scanner that tests for various vulnerabilities,

including outdated software and potential misconfigurations. Figure 13, several security issues

were identified, including the absence of the X-Frame-Options and X-Content-Type-Options

headers. The X-Frame-Options header prevents clickjacking by controlling whether a browser

can render a page in a frame, while the X-Content-Type-Options header prevents MIME-type

sniffing by ensuring the browser adheres to the declared content type. Additionally, the scan

highlighted numerous backup files accessible on the server, categorized under CWE-530,

indicating a risk of information exposure through unsecured backups. The scan reported 162

items, suggesting a significant exposure risk. To mitigate these issues, it is recommended to

configure the X-Frame-Options and X-Content-Type-Options headers properly and secure or

remove unnecessary backup files. Implementing these measures will enhance the web server's

security posture by reducing the risk of exploitation through known vulnerabilities.

Table 16: OpenVAS Total Results from Non-RT RIC

Severity
Details

(CVSS)(CVE)
Solutions

High SSL/TLS: Report Vulnerable Cipher Suites for The configuration of these

75

HTTP

(7.5)

(CVE-2016-2183,CVE-2016-6329,

CVE-2020-12872)

services should be changed

so that it does not accept the

listed cipher suites anymore.

Low
TCP Timestamps Information Disclosure

(2.6)(None)
To disable TCP timestamps

Low
Weak MAC Algorithm(s) Supported (SSH)

(2.6)(None)

Disable the reported weak

MAC algorithm(s).

Low
ICMP Timestamp Reply Information Disclosure

(2.1)(CVE-1999-0524)

Block ICMP Timestamp

request and reply

OpenVAS stands as an open-source solution tailored for thorough vulnerability scanning

and management purposes, used to identify security issues within networked systems by

performing various checks on network protocols, operating systems, and applications. In

Table 16, several vulnerabilities of varying severities were identified. A high-severity issue

with SSL/TLS configurations reported the presence of vulnerable cipher suites for HTTP

(CVSS 7.5), including CVE-2016-2183, CVE-2016-6329, and CVE-2020-12872, which can

be mitigated by updating the configuration to reject these insecure cipher suites. Additionally,

low-severity vulnerabilities were found: TCP Timestamps Information Disclosure (CVSS

2.6), resolvable by disabling TCP timestamps; weak MAC algorithms in SSH (CVSS 2.6),

addressable by disabling the weak algorithms; and ICMP Timestamp Reply Information

Disclosure (CVSS 2.1, CVE-1999-0524), which can be mitigated by protecting the remote

host with a firewall. Addressing these issues will significantly enhance the security of the

system by closing potential avenues for exploitation.

Nikto and OpenVAS are distinct tools with different scopes and functionalities, making

direct comparisons challenging. Nikto primarily focuses on web server scanning, identifying

vulnerabilities related to outdated software, dangerous files, and misconfigurations specific to

76

HTTP/S services. In contrast, OpenVAS offers comprehensive vulnerability assessments

across entire networks, covering a broad range of vulnerabilities affecting different protocols,

operating systems, and applications. Nikto generates straightforward reports focused on web

server issues, whereas OpenVAS provides detailed reports with vulnerability descriptions,

CVSS scores, and remediation recommendations, supporting integration with security

management systems for comprehensive vulnerability management. In the context of O-RAN,

Nikto is valuable for assessing the security of web interfaces used for management or

configuration, quickly identifying and mitigating web-related vulnerabilities. OpenVAS, on

the other hand, is essential for thorough and ongoing vulnerability management across the

entire network of interconnected components typical of O-RAN environments. Its detailed

reporting and broad coverage make it an ideal tool for maintaining the security of complex,

multi-component O-RAN. Thus, while both tools offer unique advantages, OpenVAS is better

suited for comprehensive security assessments and management in O-RAN, whereas Nikto

excels in targeted web server vulnerability scanning.

4.1.4 DAST

Dynamic Application Security Testing (DAST) is critical in the Test and Deploy phases

of the Secure Software Development Lifecycle (SSDLC). Unlike static analysis, DAST

involves testing the application by simulating real-world attacks on a running application and

identifying vulnerabilities during runtime. In the Test phase, DAST conducts black-box

testing, probing for vulnerabilities such as SQL injection, cross-site scripting (XSS), and

authentication flaws without prior knowledge of the codebase. By simulating real-world

attacks, DAST ensures that vulnerabilities missed by static analysis are uncovered, providing

comprehensive coverage through automated scans integrated into the CI/CD pipeline. This

dynamic analysis reveals issues that manifest only during runtime, such as session

management and data handling flaws, and generates detailed reports with remediation steps

77

for developers and testers. In the Deploy phase, DAST performs pre-deployment security

validation to ensure all vulnerabilities have been mitigated and continues post-deployment

monitoring to identify new vulnerabilities that may emerge. This continuous security

assessment maintains the application's integrity, mitigating risks and ensuring robustness

against potential attacks. By integrating DAST into the SSDLC, organizations can enhance

their application's security posture, ensuring secure software releases and reducing the

likelihood of security breaches in production.

Table 17: Nessus Total Results from Non-RT RIC

Severity
Details

(CVSS)(CVE)
Solutions

High

SSL Medium Strength Cipher Suites Supported:

SWEET32

(7.5)(CVE-2016-2183)

Reconfigure the affected

application if possible to

avoid use of medium

strength ciphers.

Medium
SSL Certificate Cannot Be Trusted

(6.5)(None)

Purchase or generate a

proper SSL certificate for

this service.

Low

ICMP Timestamp Request Remote Date

Disclosure

(2.1)(CVE-1999-0524)

Filter out the ICMP

timestamp requests, and the

outgoing ICMP timestamp

replies.

Nessus, a widely used vulnerability assessment tool, identifies and helps remediate

security vulnerabilities in networked systems by performing comprehensive scans to detect

misconfigurations, missing patches, and potential exploits. The results in Table 17 highlight

vulnerabilities categorized by severity: High, Medium, and Low, each with detailed

descriptions, CVSS scores, and remediation suggestions. The High severity vulnerability

78

involves the support of SSL medium strength cipher suites (SWEET32), with a CVSS score

of 7.5 (CVE-2016-2183). The recommended solution is to reconfigure the application to avoid

using medium-strength ciphers. The Medium severity vulnerability pertains to an untrusted

SSL certificate, with a CVSS score of 6.5, and the suggested fix is to obtain a proper SSL

certificate from a trusted certificate authority. The Low severity vulnerability involves ICMP

timestamp request remote date disclosure, with a CVSS score of 2.1 (CVE-1999-0524), and

can be mitigated by filtering out ICMP timestamp requests and replies. Resolving these

vulnerabilities will strengthen the system's security stance, providing better protection against

potential threats.

Figure 14: Trivy Total Results from Non-RT RIC

Trivy is a tool for scanning security flaws in containers, Kubernetes clusters, and other

artifacts, integrating seamlessly into CI/CD pipelines for continuous security monitoring. The

results presented in Figure 14 identify a range of vulnerabilities across various deployments

and stateful sets, categorized by severity levels: Critical, High, Medium, Low, and Unknown.

This scan highlights significant security risks, particularly due to the presence of multiple

79

critical and high-severity vulnerabilities, necessitating immediate action to prevent

exploitation. Additionally, the detection process has identified duplicate vulnerabilities within

the same libraries, complicating the analysis and prioritization of these issues. The high

number of medium and low-severity vulnerabilities further underscores the need for ongoing

monitoring and timely updates to maintain a strong security posture. Despite the added

complexity from duplicate vulnerabilities, it is essential to address each one systematically to

enhance the system's security and stability, thereby reducing the risk of exploitation and

improving overall resilience against potential threats.

Figure 15: Trivy CVE Results Categorize by Severity from Non-RT RIC

Figure 15 highlights a high concentration of vulnerabilities after duplicate entries were

removed, with 60% categorized as High severity and 16% as Critical. This indicates an urgent

need for remediation to maintain system security and stability. Medium severity CVEs account

for 21%, requiring planned mitigation, while Low and Unknown severities make up only 3%,

necessitating regular monitoring. A significant number of Critical vulnerabilities are linked to

buffer overflow issues, especially in the libc6 library, including CVE-2021-33574, CVE-

2021-35942, CVE-2022-23218, and CVE-2022-23219. These buffer overflow vulnerabilities

34, 16%

132, 60%

47, 21%

3, 1% 4, 2%

CVE Count

Critical

High

Medium

Low

Unknown

80

pose a serious risk, potentially leading to arbitrary code execution and system compromise.

To improve the accuracy of vulnerability assessments, it is essential to use third-party tools to

remove duplicate entries from raw data. These tools ensure the dataset is accurate and reliable

by identifying and eliminating redundant data, thus enhancing data integrity. This results in

more precise vulnerability analyses and more effective risk management strategies. Moreover,

numerous vulnerabilities still require analysis, highlighting the necessity for continuous

vigilance and assessment. By consistently updating and refining the dataset, organizations can

better prioritize remediation efforts and effectively address potential security gaps.

Nessus and Trivy are both valuable tools for securing O-RAN, each with distinct

strengths and some limitations. Nessus offers comprehensive vulnerability scanning across

network devices, operating systems, and applications, providing detailed reports with CVSS

scores, descriptions, and remediation recommendations. Its ability to perform configuration

audits and detect malware makes it essential for ensuring network security and compliance in

O-RAN. Trivy, on the other hand, specializes in container security, focusing on scanning

container images and application dependencies for vulnerabilities. It integrates seamlessly

with Kubernetes, making it highly relevant for O-RAN that use containerized microservices

and Kubernetes clusters. Trivy's real-time scanning capabilities support continuous integration

and deployment workflows, crucial for the dynamic nature of O-RAN environments.

However, Trivy's tendency to produce duplicate results can complicate analysis, making it

more challenging to prioritize and address vulnerabilities effectively. While Nessus offers

broad coverage and detailed analysis suitable for thorough security audits, Trivy provides

quick and efficient scanning for modern, containerized deployments but requires careful

management of duplicate findings. Using both tools together can provide a comprehensive

security solution, leveraging Nessus for wide-ranging vulnerability assessments and Trivy for

specialized container and Kubernetes security.

81

4.1.5 Pentest

Penetration testing, or ethical hacking, is crucial in the Maintenance phase of the Secure

Software Development Lifecycle (SSDLC), ensuring the ongoing security and integrity of

software post-deployment. This phase focuses on tasks such as applying patches, updating

components, and responding to emerging threats. Penetration testing simulates real-world

attacks to identify and mitigate vulnerabilities, thereby preventing exploitation by malicious

actors. It identifies new vulnerabilities introduced through updates, verifies the effectiveness

of patches, assesses existing security controls, and detects configuration issues. By simulating

advanced threats, penetration testing helps organizations understand their defenses' resilience

against modern attacks, informing security strategy adjustments. Additionally, regular

penetration testing ensures compliance with regulatory frameworks and industry standards,

avoiding penalties. The proactive approach of penetration testing enables organizations to

manage risks effectively, continuously improve security measures, and enhance incident

response strategies. Thus, penetration testing in the Maintenance phase is essential for

maintaining a robust security posture, ensuring software reliability, and safeguarding against

evolving threats.

Figure 16: Metasploit with Nmap Integration Total Results from Non-RT RIC

Metasploit, an open-source penetration testing framework, integrates with Nmap to

82

enhance vulnerability assessment by simulating real-world attacks and identifying security

weaknesses. Nmap is utilized to discover hosts, open ports, and services on a network,

providing detailed information about each service. The results in Figure 16 identified one open

port, TCP port 22, which is running the SSH service OpenSSH 8.2p1 on an Ubuntu Linux

system. Several vulnerabilities were detected in the SSH service, categorized with varying

levels of severity. These vulnerabilities indicate potential security weaknesses that need to be

addressed to ensure the system's security. The integration of Nmap's scanning capabilities

within the Metasploit framework allows for a comprehensive analysis of the network,

identifying critical security issues that can be mitigated to enhance the overall security posture.

Table 18: Metasploit with Nmap Integration Results Details and Solutions

CVE

(CVSS)
Details Solutions

CVE-2020-15778

(6.8)

A vulnerability in OpenSSH that

allows an attacker to potentially

execute arbitrary code.

Upgrade to the latest version of

OpenSSH. Apply security

patches provided by your OS

vendor.

CVE-2020-12062

(5.0)

A vulnerability in OpenSSH that

could allow an attacker to cause a

denial of service.

CVE-2010-4816

(5.0)

A vulnerability in OpenSSH related

to improper handling of network

connections.

CVE-2021-28041

(4.6)

A vulnerability in OpenSSH that

allows unauthorized users to bypass

certain access controls.

CVE-2021-41617 A vulnerability in OpenSSH that

83

(4.4) could lead to unintended

information disclosure.

CVE-2020-14145

(4.3)

A vulnerability in OpenSSH

affecting the handling of certain

network packets.

CVE-2016-20012

(4.3)

A vulnerability in OpenSSH that

could lead to a potential denial of

service.

CVE-2023-51767

(3.5)

A vulnerability in OpenSSH that

affects certain encryption protocols.

CVE-2021-36368

(2.6)

A minor vulnerability in OpenSSH

that could lead to information

leakage under specific conditions.

Table 18 provides an overview of vulnerabilities detected in OpenSSH 8.2p1, listing

CVE identifiers, severity scores, descriptions, and mitigation solutions. Notable

vulnerabilities include CVE-2020-15778 (score 6.8), which allows arbitrary code execution,

and CVE-2020-12062 (score 5.0), which can cause a denial of service. Other issues involve

unauthorized access control bypass and unintended information disclosure. The primary

solution across all vulnerabilities is to upgrade to the latest OpenSSH version and apply

relevant security patches. This proactive approach is crucial for minimizing security risks and

maintaining system integrity.

84

Figure 17: Kube-hunter Total Results from Non-RT RIC

Kube-Hunter is a security tool designed to scan Kubernetes clusters, identifying potential

vulnerabilities in their configurations and components. Figure 17 identified a node operating

as both node and master at IP address 192.168.40.128. Key services detected include the

Kubelet API on port 10250, responsible for managing pod operations; Etcd on port 2379,

which stores cluster data, configurations, and secrets; and the API Server on port 6443, which

manages all cluster operations. A significant vulnerability identified, labeled KHV002,

involves the Kubernetes version disclosure via the /version endpoint on the API server,

categorized under Initial Access. This vulnerability, evidenced by the version v1.22.17, could

be exploited by attackers to target specific weaknesses in that version. To mitigate these risks,

it is recommended to restrict API server access, hide version information, regularly update

Kubernetes components, and continuously monitor and audit the cluster for suspicious

activities. These measures are essential to enhancing the security posture of Kubernetes

deployments.

The comparison of Metasploit with Nmap integration and Kube-Hunter highlights their

key security features and relevance to O-RAN. Metasploit combined with Nmap offers

extensive vulnerability scanning by leveraging Nmap's network discovery and service

85

identification with Metasploit’s exploit framework, enabling automated exploitation and

detailed vulnerability reporting. This tool combination is particularly relevant for O-RAN due

to the need for both broad network scans and targeted penetration testing. It provides a holistic

security assessment, addressing network-level vulnerabilities and application-level security.

In contrast, Kube-Hunter, designed specifically for Kubernetes environments, performs

targeted scans to identify misconfigurations and vulnerabilities in Kubernetes components. Its

relevance to O-RAN lies in the adoption of containerized architectures within O-RAN, where

Kubernetes often orchestrates network functions. Kube-Hunter's focused approach ensures the

security of the orchestration layer in cloud-native deployments. Together, these tools offer a

comprehensive security assessment for O-RAN, with Metasploit and Nmap addressing broad

and deep security evaluations, and Kube-Hunter ensuring the integrity of the container

orchestration layer.

4.2 Near-RT RIC

4.2.1 SCA

Figure 18: OWASP Dependency Check Total Results from Near-RT RIC

Figure 18 reported zero dependencies scanned and no vulnerabilities detected, as the

directory lacked the configuration files needed for the tool to identify and analyze

dependencies. This outcome is primarily due to the absence of necessary configuration files,

86

such as `package.json` or `pom.xml`, which define dependencies for the project. Similarly,

Mend.io found no vulnerabilities, as it also relies on these configuration files to perform its

analysis. This absence highlights a significant difference between the Near-RT RIC and Non-

RT RIC directories, with the latter containing various tools and simulators that include their

dependencies.

The substantial difference in the results between the Non-RT Ric and Near-RT Ric scans

is due to the presence of various tools and a simulator in the Non-RT Ric directory, which are

absent in the Near-RT Ric directory. The Non-RT Ric directory includes essential

configuration files, such as `package.json` for JavaScript projects, which define the

dependencies necessary for a thorough scan. These tools and simulators inherently possess

their own dependencies, enabling the scan to detect and analyze potential vulnerabilities. In

contrast, the Near-RT Ric directory lacks these tools and configuration files, resulting in no

dependencies being identified or assessed, leading to a report of zero vulnerabilities. This

highlights the importance of ensuring that all necessary configuration files and tools that

define dependencies are present in the directory being scanned. Without these components,

the dependency-check tool cannot perform an effective analysis, leading to incomplete or

inaccurate scan results.

4.2.2 SAST

The Codacy scan of the Near-RT RIC identified only one low-severity issue concerning

the use of insecure modules or libraries. Specifically, the Dockerfile in the `ci` directory was

flagged for not using the `--no-install-recommends` option during package installation. This

omission can lead to the inclusion of additional, potentially unnecessary packages that were

not explicitly wanted, which can introduce security vulnerabilities, increase the Docker image

size, and complicate maintenance. To mitigate this risk, it is recommended to modify the

Dockerfile to include the `--no-install-recommends` option, ensuring that only the specified

87

packages are installed. For example, the command `apt-get install -y some-package` should

be changed to `apt-get install -y --no-install-recommends some-package`. This adjustment

aligns with best practices for creating leaner, more secure Docker images and enhances overall

system efficiency and security by reducing unnecessary dependencies.

Table 19: Aikido Total Results from Near-RT RIC

Severity Details

(Amount of files)
Solutions

High
Container running as root can allow attacker to

escalate attacks (3)

On your Pod, set

runAsNonRoot: true and

make sure runAsUser: is not

set to 0, which is root

High
Automatic upgrades or base Docker images can

lead to supply chain attacks. (1)

It's recommended to pin the

version of base images

inside of Docker containers.

High 1 exposed secrets (1)

Move the secret out and use

a tool to inject the secrets at

run-time.

Medium Docker container runs as default root user (2)
Add 'USER username' to the

end of your file.

Medium
Container processes can gain more privileges

than its parent (8)

set

AllowPrivilegeEscalation to

False

Medium
Filesystem for docker container should not be

writeable (8)

On your Pod, set

securityContext:

readOnlyRootFilesystem:

88

true

Medium
Default security context allows pods to access

host system. (7)

Define a Security Context

based that gives the

minimum amount of access

required for this workload.

Medium
Default Kubernetes settings allow containers to

eavesdrop on traffic. (8)

Define at least one

PodSecurityPolicy (PSP) to

prevent containers with

NET_RAW capability from

launching.

The Aikido results in Table 19 reveal significant security vulnerabilities primarily

associated with privilege escalation, improper user permissions, and insecure default

configurations in Docker and Kubernetes environments. High severity issues include

containers running as root, automatic upgrades leading to supply chain attacks, and exposed

secrets, each requiring specific configurations such as setting `runAsNonRoot: true`, pinning

base image versions, and managing secrets at runtime. Medium severity issues encompass the

use of default root users, containers gaining excessive privileges, writable filesystems, and

default security contexts allowing undue access to host systems and network traffic.

Addressing these vulnerabilities involves implementing security best practices such as

defining non-root users, setting `AllowPrivilegeEscalation` to `false`, making filesystems

read-only, and establishing stringent `PodSecurityPolicies`. These measures are crucial for

enhancing the security posture of containerized applications, thereby mitigating potential risks

and vulnerabilities.

89

Figure 19: Embold Total Results from Near-RT RIC

The Embold analysis of the Near-RT RIC repository indicates strong overall code

quality. Figure 19 is reflected in a high rating of 4.42. The repository consists of 25 lines of

Python code, with 10 executable lines, making it relatively small and potentially easier to

manage. Importantly, the scan found no security vulnerabilities, anti-patterns, or code

duplication, all of which are positive indicators of the code's robustness and maintainability.

However, the analysis did identify two code issues, resulting in a high issue density due to

the small size of the codebase. Addressing these issues could further improve the code's

quality.

90

Figure 20: SonarQube Total Results from Near-RT RIC

The SonarQube in Figure 20 reveals high reliability and security, with no bugs or

vulnerabilities detected, earning the code an A rating in both categories. However, the presence

of two security hotspots highlights the need for further review, specifically addressing the

insecure use of the HTTP protocol for sensitive data by switching to HTTPS. This concern

aligns with the specifications outlined by WG11 [11], which mandates stringent security

measures to ensure the confidentiality, integrity, and availability of data transmitted within O-

RAN. Therefore, before implementing the switch to HTTPS, it is crucial to confirm

compliance with WG11's specifications, ensuring that the transition adheres to the established

security protocols and does not introduce new vulnerabilities. The codebase is considered

highly maintainable, despite 3,700 code smells. The analysis also shows no code duplication,

which is a positive indicator of maintainability. Nonetheless, the lack of unit tests and 0%

code coverage indicate a need for improved testing practices to ensure the robustness and

reliability of the code.

91

4.2.3 IAST

The absence of results from the Nikto scan can be attributed to the lack of web services

within this environment. Nikto is a web server scanner designed to identify vulnerabilities and

misconfigurations in web servers by checking for outdated software, insecure files, and other

common issues. However, since the Near-RT RIC does not host any web servers or web

services, there were no HTTP(S) endpoints for Nikto to scan. Consequently, this resulted in

no findings. This underscores the importance of selecting appropriate tools based on the

specific context and components present in the environment being analyzed. In this case, using

Nikto was ineffective because there were no web services present.

The results from OpenVAS in Table 20 reveal several vulnerabilities, consistent with

similar results in Non-RT RIC, that need addressing to enhance system security. A high

severity issue involves the use of vulnerable cipher suites for HTTP, with specific

vulnerabilities identified as CVE-2016-2183, CVE-2016-6329, and CVE-2020-12872,

necessitating the reconfiguration of services to use secure cipher suites. Low severity issues

include TCP timestamps information disclosure, weak MAC algorithms in SSH, and ICMP

timestamp reply information disclosure. These vulnerabilities can be mitigated by disabling

TCP timestamps, weak MAC algorithms, and protecting the system against ICMP timestamp

requests and replies through firewall configurations. Addressing these issues is essential to

strengthen the system's security and protect against potential exploits.

Table 20: OpenVAS Total Results from Near-RT RIC

Severity
Details

(CVSS)(CVE)
Solutions

High

SSL/TLS: Report Vulnerable Cipher Suites for

HTTP

(7.5)

The configuration of this

services should be changed

so that it does not accept the

92

(CVE-2016-2183,CVE-2016-6329,

CVE-2020-12872)

listed cipher suites anymore.

Low
TCP Timestamps Information Disclosure

(2.6)(None)
To disable TCP timestamps

Low
Weak MAC Algorithm(s) Supported (SSH)

(2.6)(None)

Disable the reported weak

MAC algorithm(s).

Low
ICMP Timestamp Reply Information Disclosure

(2.1)(CVE-1999-0524)

Protect the remote host by a

firewall

4.2.4 DAST

The Nessus scan results from Table 21 reveal several security vulnerabilities that are

consistent with those found in the Non-RT RIC. A high severity issue identified is the support

of medium strength cipher suites, specifically SWEET32, which poses a significant risk and

requires reconfiguration to use stronger ciphers. Additionally, a medium severity issue is the

presence of an untrusted SSL certificate, which can facilitate man-in-the-middle attacks,

necessitating the acquisition of a proper SSL certificate from a trusted authority. A low severity

issue involves ICMP timestamp request remote date disclosure, which can expose the system's

time and potentially aid attackers. Mitigating this issue involves filtering out ICMP timestamp

requests and replies. Addressing these vulnerabilities is essential to improving the security

posture and protecting against potential exploits.

Table 21: Nessus Total Results from Near-RT RIC

Severity
Details

(CVSS)(CVE)
Solutions

High
SSL Medium Strength Cipher Suites Supported:

SWEET32

Reconfigure the affected

application if possible to

93

(7.5)(CVE-2016-2183) avoid use of medium

strength ciphers.

Medium
SSL Certificate Cannot Be Trusted

(6.5)(None)

Purchase or generate a

proper SSL certificate for

this service.

Low

ICMP Timestamp Request Remote Date

Disclosure

(2.1)(CVE-1999-0524)

Filter out the ICMP

timestamp requests (13),

and the outgoing ICMP

timestamp replies (14).

Figure 21 highlights a significant number of vulnerabilities across various deployments,

with particular concern for the critical and high-severity vulnerabilities found in key

deployments such as ‘ricplt-dbaas-server’, ‘prometheus-alertmanager’, ‘ricplt-o1mediator’,

and ‘appmgr’. These critical and high-severity issues require urgent remediation to mitigate

major security risks. Additionally, the high number of medium and low-severity vulnerabilities

underscores the need for comprehensive security upgrades throughout the system. Similar

findings were observed in the Non-RT RIC, where duplicate vulnerabilities in the same

libraries were identified, complicating the analysis and prioritization. Addressing these

vulnerabilities is essential to improve the security posture of the Near-RT RIC environment,

ensuring strong protection against potential exploits and maintaining the system’s overall

integrity.

94

Figure 21: Trivy Total Results from Near-RT RIC

Figure 22: Trivy CVE Results Categorize by Severity from Near-RT RIC

After cleaning somes data, Figure 22 reveals that medium severity vulnerabilities

dominate, with 301 CVEs, representing 57% of the total. High and low severity vulnerabilities

are evenly split, each comprising 21% of the total, with 110 high severity CVEs and 109 low

severity CVEs. Critical vulnerabilities are the rarest, with only 6 CVEs, making up 1% of the

total. Significantly, these critical vulnerabilities match those identified in the Non-RT RIC,

6, 1%

110, 21%

301, 57%

109, 21%

CVE Count

Critical

High

Medium

Low

95

mainly involving buffer overflow issues. This distribution indicates a pressing need to

prioritize remediation efforts on medium and high severity vulnerabilities to bolster system

security, while also addressing the critical buffer overflow vulnerabilities due to their severe

risk potential.

Trivy's results reveal several challenges and limitations in managing vulnerabilities. One

issue is the repetition of CVEs across multiple deployments, making analysis more complex

as each CVE must be individually reviewed. As a free tool, Trivy lacks the advanced features

available in paid solutions, which limits the depth and comprehensiveness of its reports. It

also lacks advanced filtering, reporting, and integration capabilities, making thorough analysis

in complex environments difficult.

To address these challenges, third-party tools with advanced features can provide better

reporting, filtering, and integration capabilities, facilitating easier management and

remediation of vulnerabilities. Tools that consolidate and deduplicate vulnerabilities can help

prioritize and address critical issues more effectively. Investing in tools that offer detailed and

customizable reports can provide insights into critical vulnerabilities and suggest specific

remediation steps, thereby enhancing the overall security posture. While Trivy is useful for

identifying vulnerabilities, its limitations highlight the need for more advanced third-party

solutions to improve the security of the Near-RT RIC environment.

4.2.5 Pentest

The result from Metasploit in Figure 23 identified several critical vulnerabilities similar

to those found in the Non-RT RIC environment. Notably, the scan revealed that port 111/tcp,

associated with the RPCBind service, is open but did not show specific vulnerabilities linked

to it. While no immediate vulnerabilities were detected for RPCBind, the presence of an open

port remains a security concern, as it could potentially be exploited if not properly secured. It

is crucial to review and harden the configuration of the RPCBind service to minimize any

96

risks. Regular monitoring and vulnerability scanning should be implemented to ensure that

the service remains secure. Addressing these issues and enforcing consistent security policies

across all environments are essential steps to bolster the overall security posture of the Near-

RT RIC, preventing possible exploits through open ports.

Figure 23: Metasploit with Nmap Integration Total Results from Near-RT RIC

The Kube-hunter results reveal a significant vulnerability related to Kubernetes version

disclosure in Figure 24, which mirrors findings in the Non-RT RIC environment, albeit with

different Kubernetes versions (Near-RT is v1.16.0 but v1.22.17 from Non-RT RIC). This

vulnerability exposes the Kubernetes version via the API server’s /version endpoint,

potentially aiding attackers in exploiting known issues specific to these versions. Despite the

version differences, the consistent presence of this vulnerability indicates similar security

configurations across both environments. To mitigate this risk, it is imperative to restrict

access to sensitive endpoints, regularly update Kubernetes to the latest stable versions, and

implement stringent role-based access control (RBAC) policies. These measures will enhance

the security posture and protect against potential exploits, ensuring robust defense

mechanisms are in place for both Near-RT RIC and Non-RT RIC environments.

97

 Figure 24: Kube-hunter Total Results from Near-RT RIC

In the context of ensuring robust security for O-RAN with SSDLC, a detailed comparison

of these tools is shown in Table 22. Various tools are employed across different phases to

enhance security and mitigate vulnerabilities. During the Requirement and Design Phase,

OWASP Dependency Check and Mend.io are utilized. OWASP Dependency Check is

advantageous due to its capability to detect known vulnerabilities in project dependencies, its

support for multiple programming languages, and its regular updates. However, it may present

false positives or negatives and is limited to known vulnerabilities. Mend.io offers

comprehensive open-source security and compliance management, automated policy

enforcement, and real-time alerts, though it can be expensive for small teams and requires

complex initial setup and configuration.

In the Implementation Phase, tools like Codacy, Aikido, Embold, and SonarQube are

critical. Codacy provides continuous code quality and security analysis with support for

various programming languages and CI/CD tools integration, but its free tier has limited

customization and it may miss context-specific issues. Aikido, tailored for O-RAN systems,

integrates real-time threat intelligence and offers comprehensive security checks but is

98

relatively new and necessitates thorough training. Embold identifies design issues,

vulnerabilities, and code smells, prioritizing issues based on impact, although it may require

significant configuration and can be costly. SonarQube, known for detecting bugs,

vulnerabilities, and code smells across over 25 programming languages, has a strong

community and extensive documentation, but performance issues may arise with large

codebases, and some features require a paid version.

For the Test and Deploy Phase, Nessus, Trivy, and Nikto are employed. Nessus provides

comprehensive vulnerability scanning with regular updates and detailed reports, though it can

be resource-intensive and expensive in its professional version. Trivy is a fast and simple tool

that scans containers, filesystems, and Git repositories, but it is limited to known

vulnerabilities and may produce false positives. Nikto is an open-source web server scanner

that detects various vulnerabilities and configuration issues, but it generates a high number of

false positives and is limited to web server vulnerabilities.

Finally, in the Maintenance Phase, OpenVAS, Metasploit with Nmap, and Kube-hunter

are instrumental. OpenVAS offers a comprehensive open-source vulnerability scanning

solution with regular updates and detailed remediation guidance, but it is complex to set up

and resource-intensive. The combination of Metasploit with Nmap is powerful for penetration

testing, featuring an extensive database of exploits and strong community support, yet it

requires significant expertise and may be overkill for small projects. Kube-hunter, designed

specifically for Kubernetes security, detects a wide range of Kubernetes vulnerabilities and is

easy to set up, though it is limited to Kubernetes environments and may not cover all types of

vulnerabilities.

Table 22 Tool Alignment with SSDLC Phases for O-RAN

Phase Tool Pros Cons

Requirement OWASP
- Detects known vulnerabilities

in project dependencies.

- May have false positives

or false negatives.

99

and Design Dependency

Check

- Supports multiple

programming languages.

- Regular updates with the

latest vulnerability data.

- Limited to known

vulnerabilities only.

Mend.io

- Comprehensive open-source

security and compliance

management.

- Automated policy

enforcement.

- Real-time alerts and detailed

remediation guidance.

- Can be expensive for

small teams.

- Initial setup and

configuration can be

complex.

Implement

Codacy

- Continuous code quality and

code security analysis.

- Supports various

programming languages.

- Integration with multiple

CI/CD tools.

- Limited customization

in the free tier.

- May miss some context-

specific issues.

Aikido

- Specific focus on O-RAN

systems.

- Comprehensive security and

compliance checks.

- Real-time threat intelligence

integration.

- Still a relatively new

tool, so it may have

some teething issues.

- Requires thorough

training for effective

use.

Embold

- Identifies design issues,

vulnerabilities, and code

smells.

- Prioritizes issues based on

impact.

- Supports a wide range of

programming languages.

- May require significant

configuration for

optimal use.

- Pricing can be high for

extensive features.

SonarQube

- Detects bugs, vulnerabilities,

and code smells.

- Supports over 25

programming languages.

- Strong community and

extensive documentation.

- Performance can be an

issue with large

codebases.

- Some advanced features

require a paid version.

Test and Nessus
- Comprehensive vulnerability

scanning.

- Can be resource-

intensive.

100

Deploy - Regular updates with the

latest vulnerabilities.

- Easy-to-use interface and

detailed reports.

- Higher cost for the

professional version.

Trivy

- Fast and simple to use.

- Scan containers, filesystems,

and Git repositories.

- Regular updates with the

latest vulnerability data.

- Limited to known

vulnerabilities.

- May have false

positives.

Nikto

- Open-source web server

scanner.

- Detects various

vulnerabilities and

configuration issues.

- Regularly updated with new

vulnerabilities.

- Generates a high number

of false positives.

- Limited to web server

vulnerabilities.

OpenVAS

- Comprehensive open-source

vulnerability scanner.

- Regular updates with the

latest vulnerabilities.

- Detailed reporting and

remediation guidance.

- Can be complex to set

up and configure.

- Resource-intensive

during scans.

Maintenance

Metasploit

with Nmap

- Powerful combination for

penetration testing.

- Extensive database of known

exploits.

- Strong community and

regular updates.

- Requires significant

expertise to use

effectively.

- Can be overkill for small

projects.

Kube-

hunter

- Specifically designed for

Kubernetes security.

- Detects a wide range of

Kubernetes vulnerabilities.

- Easy to set up and run.

- Limited to Kubernetes

environments.

- May not cover all types

of vulnerabilities.

101

4.3 Demonstration

4.3.1 OpenVAS: ICMP Timestamp Disclosure

From the various results, some vulnerabilities appear in both Non-RT RIC and Near-RT

RIC, including the ICMP Timestamp disclosure identified using OpenVAS in Figure 25, as

described in Tables 17 and 21. ICMP or Internet Control Message Protocol operates at the

network layer and helps network devices diagnose communication issues. One notable

message type within ICMP is the Timestamp message, which allows devices to request and

respond with the current time in milliseconds since midnight UTC. However, the vulnerability

identified as CVE-1999-0524 involves systems responding to these ICMP Timestamp

requests, inadvertently revealing their system time. This disclosure can be exploited by

attackers, presenting several risks. Attackers can obtain system uptime information, enabling

them to discern patterns of activity and maintenance, thus aiding in the planning of targeted

attacks. Additionally, it allows for network mapping, enabling attackers to identify the most

active devices. Furthermore, timestamp information can be used to synchronize coordinated

attacks, leveraging precise timing to maximize their impact.

Figure 25: OpenVAS Vulnerability Scan Results Before Remediation

To address the identified issue, various solutions were evaluated. The solution selected,

due to its simplicity and minimal side effects, involved blocking ICMP timestamps using

Iptables. This approach was chosen because it effectively mitigates the vulnerability without

significantly impacting other network functionalities. As shown in Figure 26, a specific rule

was added to the iptables configuration to discard ICMP timestamp requests and replies. The

102

figure confirms that this rule has been successfully implemented within the system, ensuring

that no timestamp information is transmitted.

Figure 26: iptables Rules for Dropping ICMP Timestamp Requests and Replies

Figures 27 and 28 detail the testing process using hping3, a network tool for packet

crafting and analysis. In Figure 27, an ICMP timestamp reply test directed at the destination

server resulted in an "operation not permitted" message, clearly indicating that the ICMP

timestamp reply cannot be sent. This response confirms the effectiveness of the rule in

blocking outgoing ICMP timestamp replies. Figure 28 presents the results of an ICMP

timestamp request test initiated from an external server. The test revealed that all five

requested packets resulted in 100% packet loss, meaning the ICMP timestamp requests could

not reach the server. This outcome further validates the rule's efficacy in blocking incoming

ICMP timestamp requests.

Figure 27: ICMP Timestamp Reply Testing Results

Figure 28: ICMP Timestamp Request Testing Results

To ensure comprehensive mitigation of the ICMP timestamp vulnerability, an additional

test was conducted using OpenVAS again. Figure 29 illustrates the results of this test,

103

confirming that the ICMP timestamp vulnerability had been successfully resolved.

Figure 29: OpenVAS Vulnerability Scan Results After Remediation

While blocking ICMP timestamps is an effective measure to mitigate certain

vulnerabilities, it is important to consider the potential side effects on network operations. One

major challenge involves troubleshooting difficulties. ICMP, particularly echo requests and

replies (commonly known as ping), is a fundamental tool used for network troubleshooting.

By blocking or limiting ICMP traffic, network administrators may find it more challenging to

diagnose connectivity issues, as it becomes harder to determine if a host is reachable or to

identify the source of connectivity problems.

Additionally, network monitoring disruptions can occur. Many network monitoring tools

rely on ICMP to assess the availability and latency of devices. Blocking ICMP traffic can

interfere with these tools, leading to inaccurate monitoring results. This interference can cause

monitoring systems to report false positives or fail to detect actual network issues, thereby

reducing the overall effectiveness of network monitoring and management.

Furthermore, remote management challenges arise when ICMP is blocked. Remote

management tools often use ICMP to verify connectivity before proceeding with more

complex operations. Disrupting ICMP traffic can make remote management less reliable,

potentially leading to increased downtime or difficulties in managing remote devices

effectively. These challenges underscore the importance of carefully weighing the benefits of

blocking ICMP timestamps against the potential impact on network operations and

management.

Blocking ICMP timestamps using iptables has been demonstrated as an effective solution

104

for mitigating the CVE-1999-0524 vulnerability in both Non-RT RIC and Near-RT RIC

systems. This method prevents the disclosure of system time, which could otherwise be

exploited for network mapping, system uptime analysis, and coordinated attacks. Successful

implementation and testing, using tools like hping3 and OpenVAS, confirmed the efficacy of

this approach with minimal impact on other network functionalities.

However, the strategy of blocking ICMP traffic presents potential trade-offs. It can

complicate network troubleshooting, disrupt network monitoring, and hinder remote

management tasks. These challenges necessitate a careful balance between the security

benefits and operational impact. Thus, while blocking ICMP timestamps is a straightforward

and effective mitigation tactic, ongoing evaluation and adjustments are essential to maintain

both network functionality and security at optimal levels.

4.3.2 Kube-hunter: Kubernetes Version Disclosure

In both the Non-RT RIC and Near-RT RIC environments, Figures 19 and 26, respectively,

depict a vulnerability associated with Kubernetes version disclosure identified by Kube-

hunter. This vulnerability underscores a significant security threat linked to the exposure of

the Kubernetes version used in the system infrastructure. Knowledge of specific Kubernetes

versions can markedly increase the risk of targeted attacks, as adversaries can exploit known

vulnerabilities specific to that version. Critical information sources include the Kubernetes

API `/version` endpoint, which can divulge essential version details. Preventing unauthorized

access to such information is crucial for maintaining a secure environment.

When attackers ascertain the specific Kubernetes version in use, they can exploit known

vulnerabilities within that version, potentially leading to unauthorized access, privilege

escalation, or service disruption. For example, a certain version might have a documented

privilege escalation flaw that an attacker could exploit to gain administrative access.

Additionally, knowledge of the Kubernetes version enables more precise and effective

105

targeted attacks compared to generic ones. Attackers can develop exploits tailored to the

specific version, making their attacks more successful and difficult to defend against.

The public disclosure of version information also assists attackers in reconnaissance,

providing valuable insights into the system's defenses and potential vulnerabilities. This

information allows attackers to plan their strategies more effectively, increasing the likelihood

of a successful breach. Moreover, exposing such sensitive information can lead to compliance

and regulatory issues. Regulatory frameworks like GDPR or HIPAA require strict controls on

information disclosure, and non-compliance can result in legal repercussions, fines, and a loss

of trust from customers and stakeholders.

To effectively and minimally disruptively address the Kubernetes version disclosure

vulnerability, the recommended solution is to modify the API Server Configuration file by

adding the "--enable-debugging-handlers=false" flag to the command section as shown in

Figure 30. This file is typically located at "/etc/kubernetes/manifests/kube-apiserver.yaml".

By default, Kubernetes enables debugging handlers, which can expose sensitive information,

including the Kubernetes version, via endpoints like /version. Disabling debugging handlers

ensures that these endpoints are not available, thereby preventing unauthorized users from

accessing them.

By implementing this configuration, the security of the Kubernetes environment is

significantly enhanced. Only necessary API endpoints will be exposed, and debugging

information that includes version details will not be accessible. This greatly reduces the risk

of attackers exploiting known vulnerabilities associated with specific Kubernetes versions.

The restriction on debugging handlers mitigates potential security breaches by limiting the

exposure of version details that could be used for targeted attacks.

106

Figure 30: Kubernetes API Server Configuration with Debugging Handlers Disabled

After making the necessary changes to the API Server Configuration file, it is crucial to

verify the effectiveness of the solution. Running the Kube-hunter tool again post-

implementation showed that "No vulnerabilities were found" as depicted in Figure 31. This

result indicates that the Kubernetes version disclosure vulnerability has been successfully

resolved, confirming that the applied configuration changes have effectively secured the

system against this specific threat.

107

Figure 31: Kube-hunter Vulnerability Scan Results After Remediation

Implementing the "--enable-debugging-handlers=false" flag to mitigate the Kubernetes

version disclosure vulnerability does come with some significant side effects that need to be

addressed. One of the primary side effects is limited debugging capabilities. Disabling this

flag prevents access to several crucial debugging endpoints such as `/metrics`, `/logs`, `/run`,

`/exec`, `/attach`, and `/portforward`. These endpoints are essential for diagnosing issues

within pods and the cluster, and without them, troubleshooting issues with pods and nodes

may become more challenging, requiring alternative methods to gather necessary information.

Another significant side effect is the impact on automated tools. Any automated scripts or

tools that rely on these endpoints for monitoring or debugging will need to be updated or

replaced, potentially leading to temporary disruptions in operations until the changes are

implemented. Additionally, there are potential gaps in monitoring. Disabling these handlers

means losing access to some metrics provided by the `/metrics` endpoint, which can lead to

108

monitoring gaps unless compensated by other monitoring solutions that do not depend on

these endpoints.

To address these side effects, several mitigation strategies can be implemented. For

alternative monitoring solutions, dedicated monitoring tools like Prometheus can be used to

gather metrics without relying on Kubelet’s debugging endpoints. Comprehensive logging

solutions can also be implemented to capture and analyze logs from all cluster components.

Enhanced authentication and authorization policies can be implemented to ensure that only

authorized users can access these endpoints, instead of completely disabling debugging

handlers. Finally, documenting the changes and training the operations team on alternative

debugging and monitoring methods is essential to ensure a smooth transition. By carefully

planning and implementing these strategies, the security of the Kubernetes environment can

be enhanced while minimizing the operational impact of disabling the "--enable-debugging-

handlers" flag.

In conclusion, addressing the Kubernetes version disclosure vulnerability in both Non-

RT RIC and Near-RT RIC environments is critical for maintaining a secure infrastructure. This

vulnerability, identified by Kube-hunter, poses a significant threat by potentially allowing

attackers to exploit known vulnerabilities associated with specific Kubernetes versions.

Implementing the "--enable-debugging-handlers=false" flag in the API Server Configuration

file ensures that sensitive debugging information is not exposed, thereby preventing

unauthorized access to version details. This configuration significantly enhances security by

restricting access to necessary endpoints only. Verification through tools like Kube-hunter

should show that the vulnerability has been resolved. However, it is essential to address

potential side effects such as limited debugging capabilities, impact on automated tools, and

potential gaps in monitoring by implementing alternative monitoring solutions, enhancing

authentication and authorization, and providing necessary documentation and training.

109

Chapter 5 Conclusion and Future Work

From Table 22, it is evident that each tool has both advantages and disadvantages for the

O-RAN system. To achieve optimal results, it is essential to implement cross-functional

testing, which revealed that many vulnerabilities were detected as early as the requirement

phase, underscoring the importance of early security integration. Addressing these

vulnerabilities at this stage ensures potential issues are identified before they can be exploited.

However, attempts to fix these issues post-deployment led to various side effects, the severity

of which varied by case, resulting in increased development or fixing costs, consuming

additional resources and time, and introducing new risks and unforeseen challenges. The

findings emphasize the necessity of incorporating security measures from the initial stages of

system design. By addressing vulnerabilities early, organizations can prevent complications

that arise later, minimizing costs and reducing the likelihood of introducing new risks during

deployment. Integrating security tools and practices early promotes a more robust and resilient

O-RAN system, allowing for comprehensive assessments and targeted solutions that are more

effective and less disruptive. Therefore, it is advisable to fix vulnerability problems from the

beginning of the design phase before the system is deployed, ensuring a more secure, efficient,

and cost-effective development process.

Adopting a proactive approach to address vulnerabilities from the beginning of a project

is essential. This strategy prevents serious issues post-deployment and enhances ongoing

improvement and resilience against new threats. By providing specific steps for remediation,

these tools streamline the process of securing open-source systems, reducing the complexity

and time required for fixes. Additionally, they facilitate the assessment of potential impacts

before updating libraries or dependencies, ensuring that any changes do not introduce new

vulnerabilities. This proactive approach helps maintain a secure development environment,

fosters continuous improvement, and enhances the overall resilience of the software against

110

future threats.

The benefits of employing multiple security tools are considerable, as they detect

vulnerabilities and offer detailed remediation solutions, simplifying the task of addressing

security issues early in the development process. These tools streamline the process of

securing open-source systems by providing specific steps for remediation, reducing the

complexity and time required for fixes. They also facilitate the assessment of potential impacts

before updating libraries or dependencies, ensuring that any changes do not introduce new

vulnerabilities. This proactive approach helps maintain a secure development environment,

fosters continuous improvement, and enhances the overall resilience of the software against

future threats. Additionally, aligning with the security specifications set forth by the WG11

(Security) of the O-RAN Alliance is crucial. WG11 emphasizes the need for robust security

measures in the open RAN architecture, addressing concerns such as authentication,

authorization, data integrity, and confidentiality. By integrating multiple security tools that

adhere to these specifications, organizations can ensure their O-RAN implementations meet

the highest security standards, protecting against known threats and anticipating emerging

vulnerabilities specific to the O-RAN ecosystem. Consequently, the combined use of these

tools and adherence to WG11 guidelines significantly bolsters the security posture of O-RAN

systems, fostering trust and reliability in these critical network components.

Integrating CI/CD pipelines to continuously test software for security issues is a priority.

This approach catches problems early and provides immediate feedback, fostering a security-

first culture. Integrating these tools with CI/CD pipelines will facilitate continuous security

testing and immediate feedback for developers, enhancing the security of open-source

systems. Utilizing advanced automated tools for real-time vulnerability scanning and

remediation throughout the software development lifecycle is essential. These tools should

work seamlessly together, providing unified dashboards for streamlined monitoring and

management of security issues. Enhancing machine learning capabilities within these tools

111

can improve the accuracy of vulnerability predictions and prioritization based on potential

impact, optimizing resource allocation.

Leveraging machine learning to predict and prioritize vulnerabilities based on impact is

critical. This enables efficient resource use and proactive threat management. Additionally,

enhancing machine learning capabilities within these tools can improve the accuracy of

vulnerability predictions and prioritization based on potential impact, optimizing resource

allocation. It is also crucial to extend the scope of security tools to address emerging

technologies and architectures, such as serverless computing and microservices, to ensure

comprehensive threat mitigation.

112

References

[1] S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne, “NR: The new 5G radio access

technology,” IEEE Communications Standards Magazine, vol. 1, no. 4, pp. 24–30, Dec.

2017, doi: 10.1109/MCOMSTD.2017.1700042.

[2] A. S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic, “Toward Next

Generation Open Radio Access Networks: What O-RAN Can and Cannot Do!,” IEEE

Netw, vol. 36, no. 6, pp. 206–213, Nov. 2022, doi: 10.1109/MNET.108.2100659.

[3] B.-S. P. LinI, “Toward an AI-Enabled O-RAN-based and SDN/NFV-driven 5Ｇ& IoT

Network Era,” Network and Communication Technologies, vol. 6, no. 1, p. 6, Jun. 2021,

doi: 10.5539/nct.v6n1p6.

[4] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understanding O-RAN:

Architecture, Interfaces, Algorithms, Security, and Research Challenges,” IEEE

Communications Surveys and Tutorials, vol. 25, no. 2, pp. 1376–1411, 2023, doi:

10.1109/COMST.2023.3239220.

[5] H. Lefeuvre, V.-A. B˘, Y. Chien, F. Huici, N. Dautenhahn, and P. Olivier, “Assessing

the Impact of Interface Vulnerabilities in Compartmentalized Software”, doi:

10.14722/ndss.2023.24117.

[6] M. Alavirad et al., “O-RAN architecture, interfaces, and standardization: Study and

application to user intelligent admission control,” Frontiers in Communications and

Networks, vol. 4, 2023, doi: 10.3389/frcmn.2023.1127039.

[7] “About O-RAN ALLIANCE.” [Online]. Available: https://www.o-ran.org/about

[8] M. Liyanage, A. Braeken, S. Shahabuddin, and P. Ranaweera, “Open RAN security:

Challenges and opportunities,” Journal of Network and Computer Applications, vol.

214. Academic Press, May 01, 2023. doi: 10.1016/j.jnca.2023.103621.

[9] C. T. Shen et al., “Security Threat Analysis and Treatment Strategy for ORAN,” in

113

International Conference on Advanced Communication Technology, ICACT, Institute

of Electrical and Electronics Engineers Inc., 2022, pp. 417–422. doi:

10.23919/ICACT53585.2022.9728862.

[10] “The Complete Guide to O-RAN Alliance - Moniem-Tech.” [Online]. Available:

https://moniem-tech.com/2022/09/15/the-complete-guide-to-o-ran-alliance/

[11] “The O-RAN ALLIANCE Security Work Group Continues Defining O-RAN Security

Solutions.” [Online]. Available: https://www.o-ran.org/blog/the-o-ran-alliance-

security-work-group-continues-defining-o-ran-security-solutions

[12] “O-RAN Software Community (O-RAN SC).” [Online]. Available: https://wiki.o-ran-

sc.org/

[13] “Releases Version of O-RAN.” [Online]. Available: https://wiki.o-ran-

sc.org/display/REL/Releases

[14] A. Boulanger, “Open-source versus proprietary software: Is one more reliable and

secure than the other?,” IBM Systems Journal, vol. 44, no. 2, pp. 239–248, 2005, doi:

10.1147/SJ.442.0239.

[15] Z. Pan et al., “Ambush From All Sides: Understanding Security Threats in Open-

Source Software CI/CD Pipelines,” IEEE Trans Dependable Secure Comput, 2023, doi:

10.1109/TDSC.2023.3253572.

[16] F. Asisi Bimo et al., “OSC Community Lab: The Integration Test Bed for O-RAN

Software Community,” ArXiv, p. arXiv:2208.14885, Aug. 2022, doi:

10.48550/ARXIV.2208.14885.

[17] “O-RAN Downloads - WG1: Use Cases and Overall Architecture Workgroup (O-RAN

Architecture Description 9.0).” [Online]. Available:

https://orandownloadsweb.azurewebsites.net/specifications

[18] “What is the RIC in Open RAN ? - 5G Training and 5G Certification.” [Online].

Available: https://www.5gworldpro.com/blog/2022/09/12/what-is-the-ric-in-open-ran/

114

[19] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intelligence and Learning

in O-RAN for Data-Driven NextG Cellular Networks,” IEEE Communications

Magazine, vol. 59, no. 10, pp. 21–27, Oct. 2021, doi: 10.1109/MCOM.101.2001120.

[20] M. J. Heron, V. L. Hanson, and I. Ricketts, “Open source and accessibility: advantages

and limitations,” Journal of Interaction Science 2013 1:1, vol. 1, no. 1, pp. 1–10, May

2013, doi: 10.1186/2194-0827-1-2.

[21] M. Almarzouq, L. Zheng, G. Rong, and V. Grover, “Communications of the Association

for Information Systems Open Source: Concepts, Benefits, and Challenges

Recommended Citation Open Source: Concepts, Benefits, and Challenges,”

Communications of the Association for Information Systems, vol. 16, pp. 756–784,

2005, doi: 10.17705/1CAIS.01637.

[22] G. Schryen, “What does vulnerability and patch data say? is open source security a

myth?”, doi: 10.1145/1941487.1941516.

[23] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnerabilities in open-

source software libraries,” 2015 IEEE 31st International Conference on Software

Maintenance and Evolution, ICSME 2015 - Proceedings, pp. 411–420, Nov. 2015, doi:

10.1109/ICSM.2015.7332492.

[24] B. Barritt and W. Eddy, “Service Management & Orchestration of 5G and 6G Non-

Terrestrial Networks,” IEEE Aerospace Conference Proceedings, vol. 2022-March,

2022, doi: 10.1109/AERO53065.2022.9843390.

[25] M. Daghmehchi Firoozjaei, J. (Paul) Jeong, H. Ko, and H. Kim, “Security challenges

with network functions virtualization,” Future Generation Computer Systems, vol. 67,

pp. 315–324, Feb. 2017, doi: 10.1016/J.FUTURE.2016.07.002.

[26] “O-Ran Policy Coalition, 2021. Open RAN Security in 5G,” 2021. [Online]. Available:

https://www.openranpolicy.org/wp-content/uploads/2021/04/Open-RAN-Security-in-

5G-4.29.21.pdf

115

[27] “O-RAN Downloads - WG2: Non-real-time RAN Intelligent Controller and A1

Interface Workgroup (O-RAN Non-RT RIC Architecture 3.0).” [Online]. Available:

https://orandownloadsweb.azurewebsites.net/specifications

[28] Marcin Dryjański, “O-RAN Non-RT RIC: Architecture and rApps.” [Online].

Available: https://rimedolabs.com/blog/o-ran-non-rt-ric-architecture-and-rapps/

[29] “Ericsson, 2020. Security Considerations of Open RAN,” 2020. [Online]. Available:

www.ericsson.com/en/security/a-guide-to-5g-network-security

[30] Amy Zwarico and Sébastien Jeux, “The O-RAN ALLIANCE Security Task Group

Tackles Security Challenges on All O-RAN Interfaces and Components.” [Online].

Available: https://www.o-ran.org/blog/the-o-ran-alliance-security-task-group-tackles-

security-challenges-on-all-o-ran-interfaces-and-components

[31] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of untrusted computing

platforms,” Proceedings - IEEE International Conference on Computer Design: VLSI

in Computers and Processors, pp. 131–134, 2012, doi: 10.1109/ICCD.2012.6378629.

[32] R. H. Sloan and R. Warner, “Unauthorized Access,” p. 401, 2017.

[33] A. W. Kondoro and J. S. Mtebe, “Investigating Secure Implementation of Government

Web based Systems inTanzania,” pp. 978–979, 2018, Accessed: Nov. 02, 2023.

[Online]. Available: www.IST-Africa.org/Conference2018

[34] M. Helenius and M. Vallius, “REST API Security: Testing and Analysis,” May 2022,

Accessed: Nov. 02, 2023. [Online]. Available:

https://trepo.tuni.fi/handle/10024/139682

[35] “O-RAN Downloads - WG3: Near-real-time RIC and E2 Interface Workgroup (O-RAN

Near-RT RIC Architecture 4.0).” [Online]. Available:

https://orandownloadsweb.azurewebsites.net/specifications

[36] H.-T. Thieu, V.-Q. Pham, A. Kak, and N. Choi, “Demystifying the Near-real Time RIC:

Architecture, Operations, and Benchmarking Insights,” IEEE INFOCOM 2023 - IEEE

116

Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–

8, May 2023, doi: 10.1109/INFOCOMWKSHPS57453.2023.10225852.

[37] T. O. Atalay, S. Maitra, D. Stojadinovic, A. Stavrou, and H. Wang, “Securing 5G

OpenRAN with a Scalable Authorization Framework for xApps,” pp. 1–10, Aug. 2023,

doi: 10.1109/INFOCOM53939.2023.10228961.

[38] S. Soltani, M. Shojafar, A. Brighente, M. Conti, and R. Tafazolli, “Poisoning Bearer

Context Migration in O-RAN 5G Network,” IEEE Wireless Communications Letters,

vol. 12, no. 3, pp. 401–405, Mar. 2023, doi: 10.1109/LWC.2022.3227676.

[39] X. Han, N. Kheir, and D. Balzarotti, “Deception Techniques in Computer Security,”

ACM Computing Surveys (CSUR), vol. 51, no. 4, Jul. 2018, doi: 10.1145/3214305.

[40] 3rd Generation Partnership Project (3GPP), “Study on CU-DU lower layer split for NR:

Technical Report (TR) 38.816, version 15.0.0.,” 2017.

[41] A. Đurović, A. Plećić, F. Banković, and G. Marković, “OPEN RAN-POSSIBILITIES

AND CHALLENGES”, doi: 10.37528/FTTE/9788673954165/POSTEL.2022.021.

[42] S. Niknam et al., “Intelligent O-RAN for Beyond 5G and 6G Wireless Networks,” in

2022 IEEE GLOBECOM Workshops, GC Wkshps 2022 - Proceedings, Institute of

Electrical and Electronics Engineers Inc., 2022, pp. 215–220. doi:

10.1109/GCWkshps56602.2022.10008676.

[43] N. Kazemifard and V. Shah-Mansouri, “Minimum delay function placement and

resource allocation for Open RAN (O-RAN) 5G networks,” Computer Networks, vol.

188, p. 107809, Apr. 2021, doi: 10.1016/J.COMNET.2021.107809.

[44] W. Azariah, F. A. Bimo, C.-W. Lin, R.-G. Cheng, R. Jana, and N. Nikaein, “A Survey

on Open Radio Access Networks: Challenges, Research Directions, and Open Source

Approaches,” Aug. 2022, Accessed: Oct. 05, 2023. [Online]. Available:

https://arxiv.org/abs/2208.09125v1

[45] H. Hojeij, M. Sharara, S. Hoteit, and V. Vèque, “Dynamic Placement of O-CU and O-

117

DU Functionalities in Open-RAN Architecture,” Sep. 2023, doi:

10.13039/501100001665.

[46] L. Goyal and B. Keswani, “Study, analysis and formulation of a new method for

integrity protection of digital data from unauthorized access,” IJSRD-International

Journal for Scientific Research & Development|, vol. 1, 2013, Accessed: Nov. 24, 2023.

[Online]. Available: www.ijsrd.com

[47] “O-RAN Downloads - WG6: Cloudification and Orchestration Workgroup (O-RAN

Cloud Architecture and Deployment Scenarios for O-RAN Virtualized RAN 5.0).”

[Online]. Available: https://orandownloadsweb.azurewebsites.net/specifications

[48] F. Klement et al., “Open or not open: Are conventional radio access networks more

secure and trustworthy than Open-RAN?,” Apr. 2022, Accessed: Nov. 01, 2023.

[Online]. Available: https://arxiv.org/abs/2204.12227v3

[49] M. Kandias, N. Virvilis, and D. Gritzalis, “The insider threat in cloud computing,”

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 6983 LNCS, pp. 93–103, 2013,

doi: 10.1007/978-3-642-41476-3_8/COVER.

[50] M. A. Habibi, G. YILMA, X. Costa-Perez, and H. D. Schotten, “Unifying 3GPP, ETSI,

and O-RAN SMO Interfaces: Enabling Slice Subnets Interoperability,” Oct. 2023, doi:

10.36227/TECHRXIV.24225532.V1.

[51] “3GPP TS 38.460: NG-RAN; E1 general aspects and principles.” [Online]. Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?spec

ificationId=3428

[52] “3GPP TS 38.470: NG-RAN; F1 general aspects and principles.” [Online]. Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?spec

ificationId=3257

[53] “3GPP TS 38.300: NR; NR and NG-RAN Overall Description; Stage 2.” [Online].

118

Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?spec

ificationId=3191

[54] “3GPP TS 36.420: Evolved Universal Terrestrial Radio Access Network (E-UTRAN);

X2 general aspects and principles.” [Online]. Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?spec

ificationId=2449

[55] “3GPP TS 38.420: NG-RAN; Xn general aspects and principles.” [Online]. Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?spec

ificationId=3225

[56] “3GPP TS 38.401: NG-RAN; Architecture description.” [Online]. Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?spec

ificationId=3219

[57] “O-RAN Downloads - WG2: Non-real-time RAN Intelligent Controller and A1

Interface Workgroup (O-RAN A1 interface: General Aspects and Principles 3.01).”

[Online]. Available: https://orandownloadsweb.azurewebsites.net/specifications

[58] “O-RAN Downloads - WG10: OAM for O-RAN (O-RAN Operations and Maintenance

Interface Specification 11.0).” [Online]. Available:

https://orandownloadsweb.azurewebsites.net/specifications

[59] “O-RAN Downloads - WG10: OAM for O-RAN (O-RAN Operations and Maintenance

Architecture 10.0).” [Online]. Available:

https://orandownloadsweb.azurewebsites.net/specifications

[60] “O-RAN Downloads - WG3: Near-real-time RIC and E2 Interface Workgroup (O-RAN

E2 General Aspects and Principles (E2GAP) 4.01).” [Online]. Available:

https://orandownloadsweb.azurewebsites.net/specifications

[61] “O-RAN Downloads - WG4: Open Fronthaul Interfaces Workgroup (O-RAN Control,

119

User and Synchronization Plane Specification 13.0).” [Online]. Available:

https://orandownloadsweb.azurewebsites.net/specifications

[62] “O-RAN Downloads - WG4: Open Fronthaul Interfaces Workgroup (O-RAN

Management Plane Specification 13.0).” [Online]. Available:

https://orandownloadsweb.azurewebsites.net/specifications

[63] A. Zrahia, “Threat intelligence sharing between cybersecurity vendors: Network,

dyadic, and agent views”, doi: 10.1093/cybsec/tyy008.

[64] R. Di Pietro and F. Lombardi, “Virtualization Technologies and Cloud Security:

advantages, issues, and perspectives”.

[65] A. K. Y. S. Mohamed, D. Auer, D. Hofer, and J. Küng, “A systematic literature review

for authorization and access control: definitions, strategies and models,” International

Journal of Web Information Systems, vol. 18, no. 2–3, pp. 156–180, Oct. 2022, doi:

10.1108/IJWIS-04-2022-0077/FULL/PDF.

[66] L. Kim, “Cybersecurity: Ensuring Confidentiality, Integrity, and Availability of

Information,” pp. 391–410, 2022, doi: 10.1007/978-3-030-91237-6_26.

[67] Ö. Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz, and E. Akin, “A Comprehensive

Review of Cyber Security Vulnerabilities, Threats, Attacks, and Solutions,” Electronics

2023, Vol. 12, Page 1333, vol. 12, no. 6, p. 1333, Mar. 2023, doi:

10.3390/ELECTRONICS12061333.

[68] F. Sampson, “Data Privacy and Security: Some Legal and Ethical Challenges,”

Advanced Sciences and Technologies for Security Applications, pp. 109–134, 2021,

doi: 10.1007/978-3-030-72120-6_4/COVER.

[69] S. G. Gollagi et al., “A Study on Secure Software Development Life Cycle (SSDLC),”

pp. 801–809, 2021, doi: 10.1007/978-981-33-4367-2_76.

[70] M. Sharma, “Review of the Benefits of DAST (Dynamic Application Security Testing)

Versus SAST,” INTERNATIONAL JOURNAL OF MANAGEMENT AND

120

ENGINEERING RESEARCH, vol. 1, no. 1, pp. 05–08, Jun. 2021, Accessed: Dec. 19,

2023. [Online]. Available: https://www.ijmer.org/index.php/journal/article/view/2

[71] “Enterprise Open Source and Linux | Ubuntu.” [Online]. Available: https://ubuntu.com/

[72] “Docker: Accelerated Container Application Development.” [Online]. Available:

https://www.docker.com/

[73] “Kubernetes.” [Online]. Available: https://kubernetes.io/

[74] “ChartMuseum - Helm Chart Repository.” [Online]. Available:

https://chartmuseum.com/

[75] “Helm.” [Online]. Available: https://helm.sh/

[76] “Installation Guide for Non-RT RIC.” [Online]. Available: https://wiki.o-ran-

sc.org/display/IAT/Automated+deployment+and+testing+-

+using+SMO+package+and+ONAP+Python+SDK

[77] “Installation Guide for Near-RT RIC.” [Online]. Available: https://docs.o-ran-

sc.org/projects/o-ran-sc-ric-plt-ric-dep/en/latest/installation-guides.html#installing-

near-realtime-ric-in-ric-cluster

[78] R. Ross, M. McEvilley, and J. Carrier Oren, “NIST SP 800-160 Volume 1: Systems

Security Engineering,” 2018, doi: 10.6028/NIST.SP.800-160v1r1.

[79] “OWASP Dependency-Check | OWASP Foundation.” [Online]. Available:

https://owasp.org/www-project-dependency-check/

[80] “Mend Bolt: Find & Fix Open Source vulnerabilities.” [Online]. Available:

https://www.mend.io/free-developer-tools/bolt/

[81] “Codacy - Code Quality and Security for Developers.” [Online]. Available:

https://www.codacy.com/

[82] “Aikido — AppSec Platform For Code & Cloud Security.” [Online]. Available:

https://www.aikido.dev/

[83] “Embold | Static Code Analysis Platform.” [Online]. Available: https://embold.io/

121

[84] “Code Quality, Security & Static Analysis Tool with SonarQube | Sonar.” [Online].

Available: https://www.sonarsource.com/products/sonarqube/

[85] “Nessus Vulnerability Scanner: Network Security Solution | Tenable®.” [Online].

Available: https://www.tenable.com/products/nessus

[86] “Trivy Home - Trivy.” [Online]. Available: https://trivy.dev/

[87] “Nikto 2.5 | CIRT.net.” [Online]. Available: https://cirt.net/Nikto2

[88] “OpenVAS - Open Vulnerability Assessment Scanner.” [Online]. Available:

https://www.openvas.org/

[89] “Nmap: the Network Mapper - Free Security Scanner.” [Online]. Available:

https://nmap.org/

[90] “Metasploit | Penetration Testing Software, Pen Testing Security | Metasploit.”

[Online]. Available: https://www.metasploit.com/

[91] “kube-hunter: Hunt for security weaknesses in Kubernetes clusters.” [Online].

Available: https://github.com/aquasecurity/kube-hunter

[92] “CVE Website.” [Online]. Available: https://www.cve.org/

[93] “CWE - Common Weakness Enumeration.” [Online]. Available: https://cwe.mitre.org/

[94] “CVSS - Vulnerability Metrics.” [Online]. Available: https://nvd.nist.gov/vuln-

metrics/cvss

[95] “NVD.” [Online]. Available: https://nvd.nist.gov/

[96] “What is an ORM – The Meaning of Object Relational Mapping Database Tools.”

[Online]. Available: https://www.freecodecamp.org/news/what-is-an-orm-the-

meaning-of-object-relational-mapping-database-tools/

